Arco-systems.ru

Журнал Арко Системс
28 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ixcp10m45s источник тока в аноде лампы

Газоразрядные лампы высокой интенсивности (HID, high-intensity discharge lamps)

Ниже рассмотрены основные типы HID ламп. Данная статья не является исчерпывающим обьяснением принципов работы и параметров ламп. Ее целью является дать общее представление о таких лампах и их использовании.

Эти лампы — одни из самых эффективных и компактных источников света. В них свет излучается при прохождении тока через пары газа (в большинстве ламп основным газом являются пары ртути). Так же как и люминесцентные лампы , большинство HID ламп обладают отрицательным сопротивлением, т.е. при увеличении тока напряжение уменьшается (ксеноновые лампы сверхвысокого давления являются приятным исключением, но в аквариумах они вряд ли найдут применение), поэтому для ограничения тока надо использовать балласты.

HID лампы делятся на несколько типов по виду используемого газа:

  • Ртутные лампы (Mercury Vapor Lamps)
  • Металло-галоидные (MH, Metal-Halide Lamps).
  • Натриевые лампы высокого и низкого давления (HPS — High Pressure Sodium, LPS — Low-Pressure Sodium)
  • Все остальные лампы — ксеноновые, циркониевые и т.д. Ввиду их спецфичности, например, сложных источников питания постоянного тока для ксеноновых ламп, взрывоопасности и т.д., они неприменимы для аквариума. Если у кого возникнет желание использовать их для аквариума, то информацию найти можно в различных источниках

Спектры газоразрядных ламп приведены ниже и в отдельном разделе

Здесь изображены различные типа ламп — ртутные, металло-галоидные и натриевые высокого давления. Как видно, лампы отличаются большим многообразием размеров, цоколей, расположенеим электродом и т.д.

Скачать справочные данные на транзисторы для люминесцентных ламп

Как и в смежной статье по ремонту ламп, выкладываю файлы по теме. Всё можно скачать бесплатно и свободно. Пользуйтесь на здоровье, и пишите отзывы и благодарности в комментарии.

• mje13001 / Даташит на транзистор mje13001, pdf, 88.67 kB, скачан: 7173 раз./

• MJE13002 (УКТ9145Б),MJE13003 (УКТ9145Б)_40W / Даташит на транзисторы, pdf, 187.82 kB, скачан: 9704 раз./

• MJE13004 MJE13005_75W / Даташит на транзисторы NPN, pdf, 184.15 kB, скачан: 4261 раз./

• mje13005_on_75W / Даташит на транзисторы к энергосберегающим лампам., pdf, 135.38 kB, скачан: 4220 раз./

• mje13006 mje13007_80W / Даташит на транзисторы к энергосберегающим лампам., pdf, 192.8 kB, скачан: 3807 раз./

• MJE13007-On_80W / Даташит на NPN транзисторы к энергосберегающим лампам., pdf, 127.07 kB, скачан: 10487 раз./

• mje13008 mje13009_100W / Даташит на NPN транзисторы к энергосберегающим лампам. Собраны несколько даташитов разных производителей в один файл., pdf, 1.07 MB, скачан: 4976 раз./

Прецизионный источник опорного напряжения (ИОН) AD584LH: проверяем точность мультиметров в домашних условиях

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о недорогом прецизионном источнике опорного напряжения (ИОН) на базе микросхемы AD584LH, позволяющим в домашних условиях проверить различные измерительные приборы на соответствие заявленной точности. Прибор достаточно популярный, поэтому если заинтересовались, милости прошу под кат.

Приобрести ИОН можно здесь

Характеристики:

  • — Тип – ИОН
  • — Напряжение питания – 4,5-30V
  • — Выходное напряжение – 2,5V, 5V, 7,5V или 10V
  • — Используемая микросхема – AD584LH
  • — Размеры платы – 56мм*47мм

Внешний вид:

Источник опорного напряжения AD584LH (в дальнейшем ИОН) поставляется в обычном антистатическом пакете:

У некоторых продавцов в комплекте еще идет поверочная бирка с контрольными значениями, но в моем случае ее не было.

Основное назначение прибора — формирования прецизионного малошумящего напряжения известной величины с минимальными температурными и временными дрейфами. ИОН могут применяться как источники эталонного напряжения для АЦП, ЦАП, для источников питания и т.д. Данный прибор позволяет выставить на выходе четыре значения выходного напряжения: 2,5V, 5V, 7,5V и 10V. Конечно, диапазон небольшой, но общее представление о точности измерительного прибора дать может.

Выглядит он следующим образом:

Представляет собой плату, на которой распаяны следующие основные элементы:

  • — микросхема AD584LH
  • — два вида разъемов питания
  • — выключатель питания
  • — четыре контактные клеммы
  • — два типа выходных клемм
  • — индикатор

Монтаж платы односторонний:

Присутствуют небольшие следы несмытого флюса, но на работоспособность это никак не влияет.

Рабочее напряжение ИОН составляет от 4,5V до 30V, наиболее точные результаты получаются при напряжении 12-15V. Напряжение питания ИОН должно быть выше выходного как минимум, на 1 вольт. На плате присутствует два вида разъема питания:

Внутренний хорошо подходит для работы с 12V батарейками типа 23А:

Сама по себе батарейка там не поджимается, а вот со специальным держателем (холдером) встает как родная:

Читать еще:  Энергосберегающие лампы моргают с диодным выключателем

Такие держатели достаточно распространены и стоят меньше доллара за десять штук, поэтому рекомендую приобрести:

К тому с помощью таких источников питания (батареек) можно запитывать различные маломощные приборы, которым требуется для работы более 10V.

Второй разъем предназначен для подключения внешнего питания, преимущественно от сетевого источника. Представляет собой разъем DC 5мм:

У каждого разъема присутствует по одному диоду Шоттки для защиты от переполюсовки питания, поэтому по-дурости сжечь плату не получится.

Что касается самой микросхемы, то есть несколько серий и AD584L самая точная (см. спецификации). Серии «J» и «S» имеют погрешность 30mV при 10V, «K» и «T» 10mV при 10V, а «L» всего 5mV, поэтому выбирайте именно ее.

Габариты:

Размеры платки составляют всего 56мм*47мм:

По традиции сравнение с тысячной банкнотой и коробком спичек:

Тестирование:

В качестве сравнения будем использовать мультиметр UNI-T UT61E как самый точный из всей серии. Первым делом посмотрим точность при 10V:

Очень неплохо, учитывая тот факт, что сама микросхема имеет небольшую погрешность. При 10V допускается погрешность 0,005V.

Опорное напряжение 7,5V:

Погрешность самой микросхемы на этом напряжении составляет 4mV.

Опорное напряжение 5V:

Опорное напряжение 2,5V:

Конечно, немного огорчает отсутствие бирки с измеренными контрольными значениями, но ходят слухи, что китайцы ее «рисуют» от балды. В любом случае точности для домашних измерений хватает с большим запасом.

При использовании источника питания с напряжением меньшим, чем установлено на выходе, погрешность огромная. Напряжение батарейки 23А составляет 9,5V, выставлено 10V, а в действительности на выходе ИОН около 8,41V:

При установке на выходе 7,5V, показания в норме:

При 2,5V также все в норме:

На мой взгляд, разница по напряжению должна быть не менее одного вольта, чтобы получить хорошую точность на выходе ИОН.

Выоды:

Отличная и главное недорогая плата для проверки точности измерительных приборов в домашних условиях. Огорчает лишь небольшой диапазон выходного напряжения, хотелось бы больше. По ссылке самая точная из серии, рекомендую именно ее.

Блок питания для лампового УМЗЧ — электрическая схема

Источник постоянного тока состоящий из регулятора напряжения на LM317HVT используется для стабилизации тока выходного каскада. Ток смещения можно регулировать путем изменения текущей настройки резистора (10-22 Ома), и это позволит использовать в процессе экспериментов множество различных радиоламп. Для удобства введён переключатель, он может быть использован, чтобы легко регулировать ток смещения. Сюда можно ставить лампы типа 6550, KT88, KT90.

Довольно хорошее качество компонентов используются в наборе усилителя. Переходной конденсатор российского производства — бумага в масле (PIO). Тип помечен как K40У-9 (0.33uF / 630V), который хорошо звучит и популярен среди любителей аудио. Но не стесняйтесь экспериментировать с различными другими конденсаторами. Резисторы — углеродные пленки. Выходной трансформатор — Edcor CXPP25-MS-8к, мощностью 25 Вт.

Питание поступает на УНЧ через разъем, расположенный на задней панели усилителя. На входе 220 В есть 3 ампер предохранитель и фильтр помех. Силовой трансформатор Edcor с выходными обмотками 180V-0-180 В в 250 мА и 12 В на 4 А. Питание 12V постоянного тока используется для накалов ламп. Схема на LM555 и реле, используется для задержки подачи питания анодов.

3 место — Long Wei PS-3010DF

Этот лабораторный блок питания также содержит внутри трансформатор для уменьшения шумов. Дополнительные опции, за которые приходится платить: дисплей для отображения потребляемой мощности и USB-разъем на передней панели.

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 10 мВ RMS;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА.
  • Повышенная цена по сравнению с предыдущими вариантами;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Малые пульсации;
  • Большие цифровые индикаторы, в том числе потребляемая мощность;
  • Есть защита от короткого замыкания;
  • Дополнительно USB-разъем;
  • Контакты под штекер и под зажим;
  • Ручка для переноски.

Стоимость источника питания Long Wei PS-3010DF около 90 $ .

Аналоги:

  1. KORAD KA3005D по цене 110 $ (30 В, 5 А, пониженные пульсации 10 мВ и 1 мА, есть память предустановок + режим мультиметра);
  2. QJE QJ3005N по цене 80 $ (30 В, 5 A, одна большая ручка для грубой и точной установки напряжения и тока, пульсации 2 мВ и 3 мА);

МЕГЕОН 31305 за нескромные 200 $ в России (30 В, 5 А, полный клон предыдущего источника от KORAD).

Диод Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Потенциометры

Потенциометры, содержащие драгметаллы.

  • ППМЛ-М, ППМЛ-И, ППМЛ-ИМ, ППМЛ-Ф, ППМФ-М, ППБЛ-В, РПП, ПТП-1, ПТП-2, ПТП-5, ПЛП-1, ПЛП-2.
  • Некоторые потенциометры не подходят для продажи, так как внутри проволока встречается из нихрома или манганина.

Реле отечественного и импортного производства, содержащие драгметаллы.

  • РЭС7, РЭС8, РЭС9, РЭС10, РЭС14, РЭС15, РЭС22, РЭС32, РЭС34, РЭС37, РЭС48, РЭС78.
  • РП3, РП4, РП5, РП7, РПС3, РПС4, РПС5, РПС7, РПС11, РПС15, РПС18, РПС20, РПС24, РПС32, РПС34, РПС36.
  • ДП12, РКН, РКНМ, РКМ-1, РКМ-1Т, РКМ-П, РЭК43, РЭН-33, ТРА, ТРВ, ТРЛ, ТРМ, ТРН, ТРП, ТРТ, РТН, ТРСМ-1, ТРСМ-2, РВМУ-1, РКП Е-506, СК-594, РВ-5А, РТС-5.
  • Перечисленные реле подходят не все, а только с определёнными паспортами и до определённого месяца и года выпуска.
  • Реле РЭС-6, РЭС-22, РЭС-32 с белыми контактами в целом виде не подходят для продажи, снимайте алюминиевый корпус (крышку) и проверяйте цвет контактов. Если белые, то делайте срезку контактов.
  • Реле РЭС-22, РЭС-32 в целом виде покупаем только с жёлтыми контактами. Срезку контактов не надо делать, присылайте или привозите реле с целыми корпусами, так как на корпусе находится маркировка. А это, в свою очередь, напрямую влияет на цену реле.
  • Реле РЭС-9 с паспортами 00 01 и 200 стоят 2 рубля/ед..
  • У реле РЭС-10 при демонтаже должны быть сохранены внешние выводы (ноги). Без выводов данное реле существенно дешевле.
  • Реле РЭС-47, РЭС-49, РЭС-60 в целом виде покупаем на вес, отправлять Почтой России не особо рентабельно. Возможно разобрать данные реле на жёлтые контакты-пластинки и в таком виде отправлять. Цена в этом случае будет высокой.
0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты