Arco-systems.ru

Журнал Арко Системс
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как изменится ток насыщения если частота света уменьшится

Фотоэффект

теория по физике 🧲 квантовая физика

Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.

47. Работа выхода при внешнем фотоэффекте, красная граница фотоэффекта.

По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.

Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии . По закону сохранения энергии,

(1)

Уравнение (1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (1) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно растет с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), так как ни A, ни v от интенсивности света не зависят (II закон фотоэффекта). Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А=const), то при некоторой достаточно малой частоте v = v кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (III закон фотоэффекта). Согласно изложенному, из (1) получим, что

(2)

и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т.е. от химической природы вещества и состояния его поверхности. Выражение (1) можно записать в виде

Вольт-амперная характеристика фотоэлемента – зависимость фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами.

Вольт-амперная характеристика, соответствующая двум различным освещенностям катода( частота света в обоих случаях одинакова), приведена на рисунке выше. По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока – фототок насыщения – определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

Где n – число электронов, испускаемых катодом за 1 с.

Из вольт-амперной характеристики следует, что при U = 0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным пулю, необходимо приложить задерживающее напряжение U . При U = U ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

Т.е., измерив задерживающее напряжение U , можно определить максимальные значения скорости кинетической энергии фотоэлектронов.

Экспериментально показано, что задерживающий потенциал зависит от частоты света, которым облучают катод фотоэлемента, и не зависит от величины падающего светового потока. При увеличении частоты облучающего света задерживающий потенциал возрастает

Зависимость силы фототока от приложенной разности потенциалов при освещении катода светом различной частоты при одинаковом числе вырванных электронов (v2> v1> v )

На опыте обнаружено, что кинетическая энергия вырываемых светом электронов зависит только от частоты падающего света и не зависит от величины светового потока. Если частота света меньше определенной для данного вещества минимальной частоты v , то фотоэффекта не происходит. Частоту v называют красной границей фотоэффекта. Задерживающий потенциал, соответствующий красной границе фотоэффекта, равен нулю.

Читать еще:  Розетка для ремонтного освещения тип

Краткий итог: фототок насыщения зависит только от интенсивности, а запирающее напряжение U зависит от кинетической энергии вырываемых светом электронов, в свою очередь кинетическая энергия зависит только от частоты света.

Вариант 3

A1. При фотоэффекте число электронов, выбиваемых монохроматическим светом из металла за единицу времени, не зависит от

А) частоты падающего света
Б) интенсивности падающего света
В) работы выхода электронов из металла

Какие утверждения правильные?

1) А и В
2) А, Б, В
3) Б и В
4) А и Б

А2. Какой энергией обладает свет с частотой 5 · 10 14 Гц?

1) 3,96 · 10 -40 Дж
2) 3,3 · 10 -19 Дж
3) 4,5 · 10 31 Дж
4) 0

А3. В настоящее время широко распространены лазерные указки, авторучки, брелоки. При неосторожном обращении с таким (полупроводниковым) лазером можно

1) вызвать пожар
2) прожечь костюм и повредить тело
3) получить опасное облучение организма
4) повредить сетчатку глаза при прямом попадании лазерного луча в глаз

А4. Как изменится число нуклонов в ядре атома радиоактивного элемента, если ядро испустит γ-квант?

1) увеличится на 2
2) не изменится
3) уменьшится на 2
4) уменьшится на 4

А5. По данным таблицы химических элементов Д.И. Менделеева определите число нуклонов в ядре технеция.

1) 43
2) 56
3) 99
4) 142

В1. Ртутная лампа имеет мощность 125 Вт. Сколько квантов света испускается ежесекундно при излучении с длиной волны 5,79 · 10 -1 м?

В2. Ядро атома претерпевает спонтанный γ-распад. Как изменяются перечисленные ниже характеристики атомного ядра при таком распаде? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.

ВЕЛИЧИНЫ

А) масса ядра
Б) заряд ядра
В) число протонов в ядре

ХАРАКТЕР ИЗМЕНЕНИЯ

1) не изменяется
2) увеличивается
3) уменьшается

C1. Плоский алюминиевый электрод освещается светом длиной волны 83 нм. На какое максимальное расстояние от поверхности электрода может удалиться фотоэлектрон, если вне электрода имеется задерживающее электрическое поле напряженностью 150 В/м? Красная граница фотоэффекта 332 нм. Заряд электрона 1,6 ⋅ 10 -19 Кл.

История физики

Описание опыта Столетовым А.Г.

«Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)» [4, с. 193].

Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов. В опытах ученый менял знак заряда на металлической пластине с отрицательного на положительный, на пути световых лучей помещал непрозрачный экран (пластинку из картона, металла и др.), стеклянную пластинку. При этих производимых друг за другом исследованиях фотоэффект не наблюдался. Экраны из кварца, льда вследствие поглощения длинноволновой части излучения только ослабляли наблюдаемый эффект. Отсюда ученый делает вывод, что фотоэффект вызывается главным образом ультрафиолетовыми лучами. При прочих равных условиях фототок возрастал при зачистке поверхности отрицательного электрода и повышении его температуры. Для изучения зависимости фотоэффекта от освещенности поверхности электрода Столетов использовал метод прерывистого освещения. К описанной ранее экспериментальной установке был добавлен картонный круг с вырезанными окошками. Круг помещался между источником света S и конденсатором G. Площади окошек и промежутков между ними были одинаковы. Когда круг приводился во вращение (скорость вращения можно было изменять), на конденсатор падало наполовину меньше света, чем при неподвижном круге. При этом сила фототока также уменьшалась в два раза. Следовательно, сила фототока прямо пропорциональна величине светового потока. Такой же результат ученый получил, изменяя площадь освещаемой части отрицательной пластины. Эксперименты, кроме того, позволили установить, что световые лучи действуют мгновенно: фототок возникал и прекращался практически одновременно с началом и прекращением освещения конденсатора. Увеличение напряжения вело к возрастанию силы фототока до определенного значения (ток насыщения), затем он оставался постоянным.

Читать еще:  Номинал тока для кабеля

Выводы Столетова А.Г.

В результате проведенных в воздухе экспериментов Столетов пришел к следующим выводам:

«1. Лучи вольтовой дуги, падая на поверхность отрицательно заряженного тела, уносят с него заряд.

2. Это действие лучей есть строго униполярное, положительный заряд лучами не уносится.

3. Разряжающим действием обладают — если не исключительно, то с громадным превосходством перед прочими — лучи самой высокой преломляемости, недостающие в солнечном спектре (λ = 295•10 –6 мм). Чем спектр обильнее такими лучами, тем сильнее действие.

4. Для разряда лучами необходимо, чтобы лучи поглощались поверхностью тела.

5. Разряжающее действие лучей обнаруживается даже при весьма кратковременном освещении, причем между моментом освещения и моментом соответственного разряда не протекает заметного времени.

6. Разряжающее действие, при одинаковых условиях, пропорционально энергии активных лучей, падающих на разряжаемую поверхность.

7. Каков бы ни был механизм активно-электрического разряда, мы вправе рассматривать его как некоторый ток электричества.

8. Активно-электрическое действие усиливается с повышением температуры» [4, с. 238, 239].

.

Здесь umax — наибольшая скорость выбитых электронов; Uззапирающее напряжение, то есть наименьшее отрицательное напряжение, при котором ток фотоэлемента равен нулю. Иногда его называют задерживающим потенциалом.

Кривая зависимости фототока от напряжения носит название вольтамперной характеристики и имеет три характерных параметра: ток насыщения iн , нулевой ток i и запирающее напряжение Uз, которые изменяются при изменении интенсивности и частоты падающего света.

Изменение интенсивности света I при постоянстве его частоты легко осуществить, приближая или удаляя источник света. Сила фототока при этом будет меняться: чем бóльшую энергию принесёт свет, тем большее число электронов будет выбито с поверхности пластины. Измерения, впервые проведённые Столетовым, показали, что фототок возрастает с увеличением интенсивности, а сила тока насыщения прямо пропорциональна интенсивности света. Зависимость iн от интенсивности I упавшего на катод света представлена на рис. 3.4. Она выражает вторую из изучаемых закономерностей фотоэффекта.

Третья закономерность несколько сложнее. Увеличение интенсивности света приводит к возрастанию фототока во всем диапазоне напряжений, включая и замедляющее поле. На рис. 3.3 вольтамперная характеристика, снятая при бόльшей интенсивности света, показана пунктиром. Но, как показали точные измерения Ф. Ленарда, увеличение интенсивности падающего света не влияет на величину запирающего напряжения, т.е. электроны покидают металл с прежней скоростью. Независимость запирающего напряжения от интенсивности света и есть третья закономерность фотоэффекта.

Читать еще:  Дкс выключатель с подсветкой

С позиций максвелловской теории, оправдавшей себя в многочисленных опытах, интенсивность света определяется квадратами напряжённостей электрического и магнитного полей, принесённых светом. Согласно закону сохранения энергии, именно за счёт поглощения энергии волны электрон вырывается из металла, преодолевая удерживающие его там силы, и приобретает кинетическую энергию. Обозначив поглощённую электроном энергию W1, получим

.

Через А в этом равенстве обозначена работа выхода электрона, которая зависит не только от металла, но и от подложки, на которую он нанесён. У чистых металлов работа выхода от 2 до 5 эВ.

Увеличение энергии W упавшей на вещество волны должно привести не только к увеличению числа выбитых электронов (возрастанию тока), но и, согласно (3.2), к увеличению их кинетической энергии, а значит и запирающего напряжения Uз . Наблюдающееся в опыте постоянство Uз с изменением интенсивности света совершенно непонятно с точки зрения электромагнитной теории Максвелла. Представления о свете как об электромагнитной волне позволяют, таким образом, объяснить первую и вторую закономерности фотоэффекта, но вызывают затруднения в объяснении третьей закономерности.

Опыты Столетова также показали, что изменение частоты света (при неизменной, разумеется, интенсивности) не влияет на величину фототока. Но при достижении некоторой граничной частоты n , которая имеет различные значения для разных металлов, фототок вообще прекращался, т. е. электроны не выходили из металла даже при очень ярком освещении (рис. 3.5). Наличие граничной частоты (красной границы фотоэффекта l = с/n) — четвёртая закономерность фотоэффекта.

Опыты также показали, что изменение частоты света влияет на запирающее напряжение. Чем больше частота, тем больше Uз . Экспериментальная зависимость запирающего напряжения от частоты

Уравнение Эйнштейна для фотоэффекта

На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии электрона:

Котов Максим Анатольевич, главный врач центра КТ «Ами», кандидат медицинских наук, доцент. Стаж 19 лет

  1. Котов М.А. Опыт применения компьютерной томографии в диагностике заболеваний органов дыхания у детей / Материалы X Невского радиологического Форума (НРФ-2018). – СПб., 2018, Лучевая диагностика и терапия. 2018. № 1 (9). — С. 149.
  2. Панов А.А. Пневмония: классификация, этиология, клиника, диагностика, лечение, 2020.
  3. Бова А.А. Пневмонии: этиология, патогенез, клиника, диагностика, 2016.
  4. Chl Hong, M.M Aung , K. Kanagasabai , C.A. Lim , S. Liang , K.S Tan. The association between oral health status and respiratory pathogen colonization with pneumonia risk in institutionalized adults, 2018.
  5. Yang-Pei Chang, Chih-Jen Yang, Kai-Fang Hu, A-Ching Chao, Yu-Han Chang, Kun-Pin Hsieh, Jui-Hsiu Tsai, Pei-Shan Ho, Shen-Yang Lim. Risk factors for pneumonia among patients with Parkinson’s disease: a Taiwan nationwide population-based study, 2016.
  6. Клинические рекомендации по диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых. Министерство здравоохранения РФ, 2019.

Если вы оставили ее с 8:00 до 22:00, мы перезвоним вам для уточнения деталей в течение 15 минут.

Если вы оставили заявку после 22:00, мы перезвоним вам после 8:00.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector