Arco-systems.ru

Журнал Арко Системс
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оптический бесконтактный выключатель освещения своими руками

Разновидности и принцип работы бесконтактных выключателей света

Бесконтактный выключатель используется для автоматического включения и выключения света. Встроенные инфракрасные датчики обеспечивают включение освещения в момент приближения людей. Когда в помещении никого нет, система отключает осветительные приборы. Это способствует снижению затрат на электроэнергию и увеличению ресурса ламп.

Например, бесконтактные выключатели применяют для освещения в коридорах и на лестничных площадках. В таких случаях свет включается, когда человек входит. При отсутствии движения, если на площадке никого нет, свет выключается.

К составным частям бесконтактного выключателя относятся:

  • чувствительный элемент;
  • схема обработки сигнала;
  • силовой ключ.

Разновидности

Существует несколько типов датчиков, входящих в состав бесконтактных моделей:

  • емкостные;
  • индуктивные;
  • оптические;
  • ультразвуковые.

Емкостные датчики

Суть работы емкостного выключателя света заключается в том, что электрическая емкость образуется при приближении людей. Это позволяет запустить контур мультивибратора, задающего время.

Объем емкости возрастает, а частота снижается, если приблизиться к прибору. Минимальная частота датчика вызывает срабатывание устройства на включение. Если человек отдаляется от помещения, происходит отключение. Чувствительный элемент в устройстве работает за счет пластины, находящейся на конденсаторе, подключенном к мультивибратору.

Иногда емкостные бесконтактные модели похожи на обычные настенные выключатели, но без использования клавиш. Очень удобно иметь подобного вида устройство на кухне, чтобы не прикасаться к нему своими руками.

Индуктивные датчики

Работа бесконтактных моделей такого типа обусловлена передвижением магнита. Датчики содержат металлический или намагниченный сердечник. Электрические импульсы создаются, если объект находится близко или далеко. В момент, когда превышено напряжение порогового элемента, обрабатывается сигнал. Далее включается триггер, который открывает ключ.

Например, человек, который входит в помещение, имеет связку ключей, что вызовет реакцию датчика на металл. Бесконтактные модели с индуктивным датчиком отличаются от емкостных вариантов отсутствием чувствительности к влажному воздуху или смене плотности.

При установке устройств стоит учитывать, что входящие люди должны иметь металлический предмет. Поэтому, к примеру, для бани такой выключатель не подойдет.

Оптические датчики

В состав оптических приборов входят фототранзисторы и светодиод. Помехи от освещения не мешают функционированию светодиодного элемента. Суть работы устройства — прерывать либо отражать поток света. Чтобы осветить небольшие участки помещения, используются светодиодные ленты.

Ультразвуковые датчики

Данные устройства работают благодаря кварцевым звуковым излучателям. Для этого необходимо настроить на нужную частоту приемник, который будет давать реакцию на звук. Ультразвуковые модели иногда называют датчиками движения и объема. При возникновении движения, вызванного присутствием людей, распределение звуковой волны меняется, датчик получает измененный сигнал.

Бесконтактный, оптический выключатель освещения со звуковым эффектом на Arduino

Сегодня статья про бесконтактный выключатель со звуковым эффектом, который был сделан мной 9 лет назад, а если быть точным, то в январе 2012 года.

С тех пор выключатель трудится у меня круглыми сутками на протяжении 9 лет. Что самое интересное, за все это время, он не вышел из строя и даже ни разу не подвис, а также у него никогда не было ложных срабатываний. В общем он хорошо себя зарекомендовал и я с уверенностью могу его Вам рекомендовать для самостоятельной сборки.
Если Вам интересны подробности, то прошу под кат.

У меня в коридоре смонтировано 7 светильников.

И для достижения красивого визуального эффекта, я использовал последовательное включение ламп, для этого мне нужно было протянуть к плате контроллера отдельный провод от каждой точки освещения.

Саму плату я спрятал в пространстве между гипсокартоном и потолком, благо места там больше чем достаточно.

ИК приемник и светодиод я разместил в подрозетнике. Во избежание ложных срабатываний их нужно изолировать между собой, для этого я использовал термоусадочный кембрик. Чтобы подключить этот оптический датчик к плате контроллера, я использовать заложенные в стену провода.

Для того чтобы дизайн выключателя не отличался от других установленных декоративных накладок в интерьере, я использовал из этой же серии телевизионную розетку, из которой выкинул все внутренности, а в отверстие вклеил круглое окошко, вырезанное из фиолетового акрила.

Все компоненты были размещены на одной плате, на которой так же установлены винтовые коннекторы для подключения проводов от светильников.

Запитал я эту плату обычным зарядным устройством от телефона.

Основой всего устройства является контроллер Arduino Nano V.3, но можно так же использовать любые другие платы, с микроконтроллером ATmega328.

ИК светодиод с фототранзистором можно взять от датчика препятствий, но не обязательно их выпаивать, достаточно перерезать лишние дорожки и припаять к ним 3 провода. Если у вас уже есть где-то ранее выпаянные детали, то перед использованием, лучше сначала проверить их на работоспособность. Инфракрасный светодиод нужно подключить к напряжению 5 В через токоограничивающий резистор 120 Ом и посмотреть на него через камеру телефона, он должен светиться фиолетовым светом. Для проверки фототранзистора понадобится любой тестер с функцией прозвонки проводников. Переводим тестер в режим прозвонки, а выводы фототранзистора подключаем к щупам тестера. После чего нужно к нему вплотную поднести любой пульт от бытовой техники и нажать любую кнопку. В ответ раздастся прерывистый пищащий звук.

Читать еще:  Mystery mtv 3211lw уменьшить ток подсветки

9 лет назад я не нашел подходящих твердотельных реле и мне пришлось их собирать самому из радио-комплектующих. Но на данный момент проще купить 8-канальный модуль твердотельных реле как на изображении, чем заниматься тратой времени на поиск этих компонентов.

Работает выключатель следующим образом

Arduino с выхода D5 постоянно выдает ШИМ сигнал с частотой примерно 977 Гц. К этому выходу через токоограничивающий резистор 82 Ом подключен светодиод, излучающий сигнал в инфракрасном диапазоне. Фототранзистор, подключенный к входу D2 детектирует отраженный от руки ИК сигнал и проверяет его на достоверность. Если сигнал из 20-ти или больше идущих подряд периодов соответствует частоте 977 Гц, то тогда контроллер включает по очереди все 7 светильников и начинает воспроизводить звуковой эффект через ШИМ выход D11. Все то же самое происходит и при выключении.

Воспроизведение звуков

Для воспроизведения звуковых эффектов используется формат WAVE без сжатия, с частотой 16000 Гц и глубиной 8 бит, но при воспроизведении данного формата с использованием ШИМ, в аудио тракте наблюдается неприятный свист и шипение. Поэтому для улучшения качества воспроизведения, я в коде использовал линейную интерполяцию. При которой, выборка семплов происходит на частоте 62.5 кГц и между оригинальными выборками вставляются еще 3 дополнительных семпла, рассчитанных методом линейной интерполяции. Таким образом на выходе снижается шум квантования, пропадает свист, улучшается качество звука и для воспроизведения не обязательно использовать дополнительные RC фильтры.

Вместо динамика я использовал старую, маленькую компьютерную колонку без встроенного усилителя.

Для конвертирования Wave файлов в Си код, можно воспользоваться онлайн конвертером.

Схема

На схеме серыми прямоугольниками отметил твердотельные реле, а тем кто хочет заморочиться, то может собрать схему полностью, так же как сделал я в далеком прошлом.

Компоненты для сборки

1 — Arduino Nano V.3
2 — Датчик препятствий
3 — 8-канальный модуль реле
4 — Резисторы 82 Ом и 1 кОм
5 — Динамик 0,5-3 Вт
6 — Любой N-P-N транзистор с допустимым током не менее 500 мА

Код для Arduino

Скачать все файлы одним архивом
В этот раз я решил добавить все используемые библиотеки в папку со скетчем, а в самом скетче прописал их локальное использование. Теперь надеюсь у новичков будет меньше ко мне вопросов по поводу ошибок, возникающих у них при компилировании.

В коде вынесены несколько констант, которые можно изменить перед прошивкой.

Константа power_ir — отвечает за дистанцию срабатывания выключателя, может принимать значения от минимума 20 и до максимума 200. Требуемое Вам значение можно определить экспериментальным путем.

lamp_num — определяет количество используемых Вами ламп. Минимальное число лампочек не может быть меньше 1, а максимальное не более 7. Если подправить код, то можно увеличить до 15.
lamp_delay — это задержка между последовательными включениями ламп, которая выражена в миллисекундах и может начинаться от 0 и до 4 294 967 295 мс. Хотя я не думаю, что такие огромные задержки кому то понадобятся.

Видео

Для просмотра видеоролика кликните по изображению.

Заключение

В заключении хотелось бы добавить, что я очень удивлен, что микроконтроллер без WDT за 9 лет ни разу не подвис. По этой же причине я не стал править код и добавлять в него WDT, так как Arduino со старыми bootloader не умеют работать с ним.

Спасибо, что дочитали до конца!

Если Вам понравилась моя статья — то поддержите ее лайком и подпиской.

Если у Вас есть вопросы, то можете их задать в комментариях.

Конструкция выключателя

В состав данного устройства входят следующие компоненты:

  • панель;
  • корпус;
  • контакты;
  • головка.

Очень важно, чтобы корпус переключателя имел хорошую прочность, чтобы устройство было устойчиво и выдерживало различные механические влияния на корпус. В качестве материала изготовители применяют алюминиево-кремниевый сплав, а некоторые виды концевых выключателей изготовляют из прочного пластика.

Подробно конструкция путевых выключателей рассмотрена на видео:

Устройство автоматического выключателя

Сенсорный выключатель состоит из трех главных частей. Его строение не зависит от его вида. Первая часть — это декоративная лицевая пластина. Она реагирует на прикосновение, приближение пальцев.

Вторая часть — это датчик, вид которого зависит от вида выключателя. Он отвечает за передачу информации от лицевой пластины, которая принимает сигнал, к третей части.Третья коммутационная часть. Она преобразует сигнал в электрический.

Читать еще:  Legrand valena выключатель трехклавишный с подсветкой

Оптические бесконтактные выключатели

Оптический бесконтактный выключатель представляет собой электронное устройство, реагирующее на изменение принимаемого светового потока. Оптические бесконтактные выключатели используются для определения наличия (отсутствия) объекта в заданном пространстве, поскольку наличие (отсутствие) объекта приводит к изменению параметров светового потока, принимаемого выключателем. Для повышения эффективности работы оптических бесконтактных выключателей и улучшения их характеристик производится модуляция и пространственная селекция светового излучения.
Эти меры позволяют устранять влияние посторонних световых засветок и помехи от других оптических выключателей.

Принцип работы оптических бесконтактных выключателей

Передатчик

  • Генератор вырабатывает последовательность электрических импульсов на излучатель оптического бесконтактного выключателя.
  • Излучатель — светодиод, создающий излучение оптического диапазона.
  • Индикатор показывает наличие напряжения питания на передатчике оптического бесконтактного выключателя.
  • Оптическая система формирует диаграмму направленности излучения и при необходимости его поляризацию.
  • Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды. Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.

Приемник излучения

  • Оптическая система формирует диаграмму направленности приемника излучения и при необходимости производит поляризационную селекцию.
  • Фотоприемник воспринимает оптическое излучение и преобразует его в электрический сигнал.
  • Усилитель усиливает входной сигнал до необходимого значения.
  • Пороговый элемент обеспечивает необходимую крутизну фронта выходного сигнала и величину гистерезиса.
  • Электронный ключ обеспечивает коммутацию выходного тока выключателя, определяет схему подключения нагрузки, имеет защиту от перегрузки и короткого замыкания.
  • Светодиодный цветной индикатор показывает состояние выключателя, позволяет определить функциональный резерв по выбранному объекту, обеспечивает контроль работоспособности, оперативность настройки.
  • Регулятор чувствительности позволяет производить настройку выключателя по фактической контрастности объекта на фоне окружающих предметов.

Функциональный резерв определяется как отношение светового потока, полученного приемником, к минимальному световому потоку, вызывающему срабатывание выключателя. Функциональный резерв позволяет компенсировать ослабление сигнала в результате загрязнения оптики и наличия аэрозольных компонентов в окружающем пространстве.

Цветной светодиодный индикатор работает следующим образом:

  • при отсутствии сигнала на входе приемника индикатор не светится
  • при появлении сигнала с уровнем, при котором происходит срабатывание выключателя, индикатор светится зеленым цветом
  • при дальнейшем увеличении уровня сигнала зеленый цвет плавно изменяется через желтый — оранжевый до красного

Контрастность объекта определяется его собственным коэффициентом отражения и величиной отраженного света от окружающего фона.

Принцип работы оптических бесконтактных выключателей на прямом луче (Тип T)

Оптические выключатели, работающие на прямом луче, состоят из приемника и передатчика, выполненных в отдельных корпусах. При эксплуатации они располагаются соосно дуг против друга. Поток излучения от излучателя передатчика направлен на приемник. Срабатывание происходит при прерывании луча объектом. Выключатели, использующие принцип прерывания луча, отличаются большой дальностью действия — до нескольких десятков метров и большой помехозащищенностью от воздействия посторонних факторов (пыль, капли воды и других жидкостей)

.

Основными недостатками таких выключателей является наличие двух отдельных изделий, что не всегда удобно при их монтаже и прокладке проводов питания к ним.

Необходимо иметь в виду, что:

  • посторонние предметы с высоким коэффициентом отражения, подобные рефлектору, находящиеся в области перекрытия диаграмм направленностей приемника и передатчика, могут вызвать ложное срабатывание;
  • прозрачные и полупрозрачные объекты недостаточно ослабят луч до порога срабатывания.

Для уменьшения или полного устранения вышеперечисленных эффектов оптические выключатели снабжены регуляторами чувствительности.
Диаметр прямого луча определяет минимальный размер регистрируемого объекта.

Принцип работы оптических бесконтактных выключателей на отраженном луче (Тип D)

В оптических выключателях, использующих эффект диффузного и зеркального отражения потока излучения от объекта, приемник и излучатель выполнены в одном корпусе. Поток излучения от передатчика попадает на поверхность объекта, от которого происходит его отражение в различных направлениях. Распределение отраженного потока определяется оптическими свойствами объекта. Часть потока возвращается обратно в приемник, вызывая его срабатывание.
Преимущество данного вида выключателей заключается в простоте применения, при котором не требуется никаких дополнительных приборов.
При использовании выключателей данного типа необходимо учитывать возможность появления ложных срабатываний в случае появления за контролируемым объектом предметов с гораздо большей отражательной способностью. В этих случаях следует применять диффузные оптические выключатели с подавлением фона.
Поскольку различные материалы отражают падающий на них поток излучения по-разному, то для нормирования расстояния срабатывания согласно по ГОСТ Р 50030.5.2-99 выбран стандартный объект воздействия — лист белой бумаги с размерами 100×100мм для выключателей с расстоянием срабатывания до 400мм и лист белой бумаги с размерами 200×200мм для выключателей с расстоянием срабатывания более 400мм.
Но учитывая специфику машиностроительных предприятий, технологические процессы на которых требуют контроля объектов с достаточно низкой отражающей способностью, сильно отличающейся от чистой белой бумаги, ПКФ “СТРАУС” использует в своей системе обозначений привязку к отражающей способности листа горячекатаной стали. Поэтому в каталоге присутствует информация по расстоянию срабатывания по 2-м видам стандартных объектов воздействия. Вторым видом стандартного объекта воздействия является пластина из горячекатаной стали с размерами 100×100мм для выключателей с расстоянием срабатывания до 400мм и пластина из горячекатаной стали с размерами 200×200мм для выключателей с расстоянием срабатывания более 400мм.
Для пересчета расстояния срабатывания для объектов из других материалов, имеющих другую отражающую способность, следует выбрать тип материала из приведенной ниже таблицы (табл.1). Затем следует выбрать соответствующий этому материалу поправочный коэффициент, который покажет в какую сторону и насколько отличается расстояние срабатывания по сравнению с расстоянием срабатывания на стандартный объект.
Например, оптический выключатель в обозначении имеет значение расстояния срабатывания 100мм. Это значит, что если потребитель будет использовать данный выключатель для контроля объекта из холоднокатаной стали, то расстояние срабатывания изменится в 1,5 раза и составит 150мм. Аналогично, расстояние срабатывания на объект из белой бумаги составит около 120мм.
Минимальный размер регистрируемого объекта определяется его отражающей способностью, контрастностью и функциональным резервом.

Читать еще:  Кнопочный выключатель без фиксации без подсветки

Таблица 1

Поправочный коэффициент на расстояние срабатывания

Белая бумага1,2
Горячекатаная сталь1,0
Холоднокатаная сталь1,5
Нержавеющая сталь7,5
Алюминий необработанный2,5
Алюминий обработанныйь1,7
Непрозрачный черный пластик0,2
Непрозрачный белый пластик1,5
Прозрачная пластиковая бутылка0,6
Прозрачная коричневая пластиковая бутылка1,0
Древесина чистая1,2
Картон0,8
Черная резина0,03

Принцип работы оптических бесконтактных выключателей на отраженном от рефлектора луче (Тип R)

Излучение светодиода имеет круговую поляризацию, т.е. представляет собой совокупность множества плоскополяризованных пространственных световых колебаний (волн) с различными плоскостями поляризации.
Если на пути луча установить оптический поляризационный фильтр, то через него пройдут только те волны, плоскость поляризации которых совпадает с плоскостью поляризации фильтра. Таким образом, поляризационный фильтр формирует луч с плоской поляризацией.
При отражении поляризованного луча от различных предметов плоскости поляризации падающего и отраженного луча, как правило, совпадают.
Плоскость поляризации изменяется на 90град. при отражении от специальных световозвращателей (уголковых отражателей или рефлекторов).
Если на пути поляризованного луча расположить еще один поляризационный фильтр с плоскостью поляризации, развернутой на 90град. по отношению к первому, то луч через него не пройдет. Таким образом, данный фильтр будет для него барьером.

Предприятие «СТРАУС» предлагает специальные световозвращатели -«рефлекторы», которые поворачивают плоскость поляризации на 90град. Они выполнены в виде самоклеящейся пленки или в виде отдельного устройства для монтажа на объектах.
Если такой рефлектор поместить на пути поляризованного луча, то луч, отразившись от него, изменит плоскость поляризации и свободно пройдет через входной поляризационный фильтр фотоприемника, повернутый на 90град. по отношению к поляризационному фильтру излучателя.
Работая с поляризованным излучением, выключатель воспринимает только поток от световозвращателя, который поворачивает плоскость поляризации на 90град. Все предметы, появляющиеся между выключателем и световозвращателем, вызывают прерывание поляризованного луча и срабатывание выключателя.
Данный эффект реализован в оптических выключателях с обозначением TRP. Поляризационные фильтры встроены вовнутрь, поэтому по внешнему виду такие выключатели ничем не отличаются от выключателей, использующих принцип отражения луча от объекта. Эти выключатели по помехозащищенности от воздействия посторонних факторов приближаются к выключателям, использующим прерывание луча.

Принцип работы оптоволоконного выключателя

Предприятие «СТРАУС» также предлагает выключатели с оптоволоконным кабелем.
Выключатели с оптоволоконным кабелем способны обнаруживать объекты в самых труднодоступных местах.
Выключатели с оптоволоконным кабелем могут работать и на отраженном луче (тип D) и на прямом луче (тип T).

Датчик движения Ардуино, схемы, подключение.

Датчик движения можно подключить по разному, в зависимости от конечной нагрузки. Если вам нужно подключить на выходе электролампу на 220 Вольт то можно использовать реле или симистор, если светодиодную ленту или электромотор постоянного тока, то вам подойдёт транзистор.

Схемы подключения датчика движения hc sr501

1. С использованием модуля реле Если вам надо подключить к датчику какую-нибудь нагрузку, например эл. лампу на 220 Вольт или включить вентилятор, эл. мотор и т.д. то для этого удобно использовать реле. В наших примерах мы будем использовать реле на 5 Вольт. Включение реле осуществляется подачей на вход 0(Low), а выключение +5 вольт(High). Выходной ток с датчика HC SR501 Читайте также: Рассчитываем светильники для потолка Армтсронг

Если будут желающие, я сделаю пару уроков как пользоваться этой программой.

2. С использованием MOSFET транзистора IRL8113

Если вам надо подключить светодиодную ленту для подсветки, скажем потолка или ступеней лестницы, или небольшой электромотор постоянного тока, тогда можно использовать транзистор. Параметры транзистора можно посмотреть здесь, а можно и купить.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector