Ток из современных светодиода
Устройство и принцип работы светодиодов
С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.
В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.
Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?
История развития
Большинство диодов работает за счёт эффекта люминесценции, открытой в начале XX века. Считается, что первые светодиод изготовил нечаянно Генри Джозеф Раунд, когда оценивал выпрямляющие свойства карбида кремния. Примечательно, что минерал карборунд на планете Земля практически не встречается, хотя чрезвычайно распространён в звёздных атмосферах.
Оттуда и прилетел метеорит, оказавшийся не по зубам Юджину Ачисону в 1891 году. Затея землекопа вполне понятна – он решил, что обнаружил на погибшем астероиде алмазы и захотел втихую продать находку. Но ювелир заметил, что отсутствуют характерные признаки драгоценнейшего камня на планете. Причём произошло это годы спустя.
Карборунд Генри Джозефа Раунда был искусственным. На начало XX века минерал уже научились синтезировать. По твёрдости камень уступает лишь алмазу. Исследуя кристаллический детектор для радио (подбодрённый опытом прочих исследователей, уже заимевших патенты), Генри обнаружил свечение. Он немедленно написал в редакцию журнала Электрический мир и сообщил указанные сведения:
- При напряжении 10 В переменного тока начинают светиться образцы карборунда жёлтым.
- По мере повышения разницы потенциалов вплоть до сетевых 110 В свечение демонстрируют все подопытные кристаллы.
- По мере повышения напряжения в спектре, помимо жёлтого, отмечаются зелёный, оранжевый и синий цвета.
- Отдельные материалы светятся лишь с краю, прочие демонстрируют объёмный эффект.
- Явление не объясняется термоэлектричеством.
Свечение возникает при прямом смещении p-n-перехода. При большом приложенном напряжении в кристалл проникает немалое число неосновных носителей заряда. Процесс объясняется туннельным эффектом. Когда “заезжие гастролёры” начинают рекомбинировать с основными носителями заряда, излишек энергии превращается в свет. Так объясняется факт, что при низких напряжениях свечения Генри Джозеф Раунд не наблюдал.
Однако не все так просто. Диоды Шоттки – представленный карборундом с металлическими контактами – способны светиться и при отрицательном приложенном напряжении. Схема в точности аналогична, но при значительной разнице потенциалов происходит лавинный пробой перехода. Атомы полупроводника ионизируются разогнавшимися носителями заряда, обратная рекомбинация производится с излучением фотона света.
Внимание! Современные светодиоды излучают исключительно при прямом смещении p-n-перехода, когда на анод подаётся положительный потенциал.
Работы Раунда повторены россиянином Лосевым в 1928 году. Учёный на кристаллическом детекторе сумел получить свечение и установил, что первые образцы светятся лишь при униполярном подключении, а для прочих направление постоянного тока не имеет значения. Попытки осмыслить факт не привели к результату. Но подтвердилось заключение Раунда, что эффект не связан с термоэлектрическим нагревом.
Началом светодиодной эры считают ранние 60-е годы, когда появились первые карборундовые плёнки. КПД первых образчиков оказался потрясающе мал и составлял 0,005%. Причина проста – карбид кремния далеко не лучший материал для изготовления сверхъярких диодов. Последнее неосуществимо на данном этапе технологии.
История [ | ]
Первое известное сообщение об излучении света твердотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом [en] из Маркони Лабс [en] . Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, химическая формула SiC), и отметил возникновение жёлтого, зелёного и оранжевого свечение на катоде прибора.
Эти эксперименты были позже, независимо от Раунда, повторены в 1923 году О. В. Лосевым, который, экспериментируя в Нижегородской радиолаборатории с кристаллическими детекторами радиоволн, видел свечение в точке контакта двух разнородных материалов, наиболее сильное — в паре карборунд — стальная игла, таким образом, он обнаружил электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало) [2] .
Наблюдение эффекта электролюминесценции в месте контакта карборунд—сталь было опубликовано им в советском журнале «Телеграфия и телефония без проводов», а в 1927 году он получил патент (в патенте устройство названо «световое реле»). Лосев умер в блокадном Ленинграде в 1942 году, и его работы были забыты, публикация не была замечена научным сообществом и много лет спустя светодиод был изобретён за рубежом. [3] .
Лосев показал, что электролюминесценция возникает вблизи спая материалов [4] . Хотя теоретического объяснения наблюдаемому явлению ещё не было, Лосев оценил практическую значимость своего открытия. Благодаря эффекту электролюминесценции появилась возможность создать малогабаритный источник света с очень низким для того времени напряжением питания (менее 10 В) и высоким быстродействием. Он назвал будущее устройство «Световое реле» и получил два авторских свидетельства, заявку на первое из них подал в феврале 1927 г. [2]
В 1961 году Джеймс Роберт Байард (англ.) русск. и Гари Питтман из компании Texas Instruments, независимо от Лосева, открыли технологию изготовления инфракрасного светодиода на основе арсенида галлия (GaAs). После получения патента в 1962 году началось их промышленное производство.
Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода». Его бывший студент, Джордж Крафорд (англ.) русск. , изобрёл первый в мире жёлтый светодиод и увеличил яркость красных и красно-оранжевых светодиодов в 10 раз в 1972 году. В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, специально адаптированный к передаче данных по волоконно-оптическим линиям связи. [ источник не указан 370 дней ]
Светодиоды оставались очень дорогими вплоть до 1968 года (около $200 за штуку), поэтому их практическое применение было ограничено. [ источник не указан 370 дней ] Исследования Жака Панкова в лаборатории RCA привели к промышленному производству светодиодов, в 1971 году он с коллегами получил синее свечение на нитриде галлия и создал первый синий светодиод [5] [6] [7] [8] . Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компания «Хьюлетт-Паккард» применила светодиодные индикаторы в своих ранних массовых карманных калькуляторах. [ источник не указан 370 дней ]
В середине 1970-х годов в ФТИ им. А. Ф. Иоффе группой под руководством Жореса Алфёрова были получены новые материалы — полупроводниковые гетероструктуры, в настоящее время применяемые для создания лазерных и светодиодов [9] [10] . После этого началось серийное промышленное производство светодиодов на гетероструктурах. Открытие было удостоено Нобелевской премий в 2000 году [11] . В 1983 году компания Citizen Electronics первой разработала и начала производство SMD-светодиодов, назвав их CITILED [12] .
В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации «Nichia Chemical Industries», изобрели технологию изготовления синего светодиода. За открытие технологии изготовления дешевого синего светодиода в 2014 году им троим была присуждена Нобелевская премия по физике [13] [14] . В 1993 году Nichia начала их промышленный выпуск, а в 1996 начала выпуск белых светодиодов [15] .
Сочетание света синего, зелёного и красного светодиодов даёт белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные светильники и экраны со светодиодной подсветкой. В 2003 году компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии, непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.
Определение диода
Диод представляет собой двухполюсное полупроводниковое устройство, которое состоит из полупроводникового материала n-типа и p-типа. Эти материалы связаны между собой. Диод пропускает ток только в одном направлении — от анода к катоду.
Поскольку диод проводит ток только в одном направлении, то его используют в качестве выпрямителя. Диод ведет себя как проводник, когда на него подается небольшое напряжение, и на нем также как и на проводнике присутствует падение напряжения.
Светодиоды. Теория.
В этой статье я поделюсь своими знаниями о светодиодах. Статья предназначена для людей, которые мало просвещены в данном вопросе и забыли школьный курс физики. Здесь нет рекомендаций или примеров по тюнингу автомобиля. Основная задача — показать, что работа со светодиодами доступна каждому.
Введение
Светодиод — далее — «СИД» (светоизлучающий диод), представляет собой полупроводниковый прибор, который при определенных условиях начинает светиться. Никакой связи с дедушкиной лампой накаливания он не имеет, в нем нет нити накаливания, нет вакуумной колбы. СИД устроен так: два прижатых друг к другу кристалла с определенными добавками, к ним приделаны две контактные ножки и все это залито оргстеклом. При подаче напряжения на ножки, частицы из двух кристаллов устремляются друг к другу и при соударении выделяют фотоны, т.е. выделяют свет. У современных ярких СИД место вокруг кристалла покрывают люминесцентным веществом, которое тоже добавляет яркости. СИД, прежде всего, является диодом (главное свойство диода — пропускать ток только в одном направлении), поэтому зажигается он только при правильном подключении полярности. При ошибке СИД просто не включится и на его здоровье это не отразится. Чтобы не перепутать полярность, необходимо знать, что ножки у него разной длины. Это сделано специально — самая длинная ножка является плюсом. Если вы вдруг обрезали ножки, то если внимательно вглядеться внутрь конструкции, можно увидеть, что на одной ножке сделано подобие кроватки для кристалла, а от второй ножки к кристаллу подходит лишь тончайший проводок. Так вот, ножка с кроваткой является минусом. Еще один признак полярности — у минусовой ножки немного спилена юбочка.
![]() |
СИД почти во всех случаях выгодно заменяет лампы накаливания. Основные плюсы — ничтожное потребление тока, более 60.000 часов гарантированной работы, не выделяет тепла, нечувствителен к вибрации, выдерживает небольшие механические повреждения, отсутствует излучение в инфракрасном и ультрафиолетовом спектре (за исключением специальных). Мой личный опыт: 4 года круглосуточно освещает светодиодик мой коридор, для ночного путешествия в туалет, за это время уменьшения яркости замечено не было.
Выбор светодиодов
По моему скромному мнению, десятая часть СИД, что ввозятся в Россию, являются условно бракованными. Возможно, они не прошли их буржуйское ОТК, поэтому были куплены по бросовым ценам, которые значительно вырастают, когда достигают нас — конечных потребителей. Обидно то, что при последовательном включении в цепь бракованного и нормального СИД — сгорает нормальный, потому что через него идет повышенный ток, не погашенный бракованным СИД. Исходя из этого, рекомендую покупать количество СИД на 30% больше, чем вам нужно для конкретной работы. Выбор СИД громаден. Я предпочитаю СИД в стандартном корпусе, который потом спиливаю для получения рассеянного излучения. Яркость СИД является давней темой споров специализирующихся на этой теме людей. Заявленная производителем яркость меряется прибором, на который лучом светит СИД, но умалчивается о боковой силе света. С помощью линзы свет СИД фокусируется лучом 30-60 градусов, поэтому при спиливании линзы интенсивность свечения сильно падает. Так что не стоит верить цифрам. Купите по одному светодиоду из понравившихся и экспериментируйте с ними. Если вам удалось найти яркие СИД с рассеянным светом, то предпочтение следует отдать им. Я покупаю белые СИД о которых производитель сообщает, что они обладают яркостью в 15 кандел и рассчитаны на ток 20mA (миллиампер). Стоимость — 40 руб., но продавец охотно скидывает цену до 30, если берешь не меньше 30 шт. Где яркость не так важна, я беру СИД по 10 кандел, цена их в два раза меньше. Зачастую качество китайских СИД превышает «японские». Иногда продавцы понятия не имеют о свойствах СИД и мне известны уже два случая, когда продавец проверял СИД напрямую батарейкой и покупатель уже дома узнавал, что они были испорчены в момент проверки. Часто в одной партии встречаются СИД с разными оттенками света, поэтому стоит заранее их отсортировать.
Об измерительных приборах
Работу с СИД без измерительных приборов можно сравнить с работой слепого окулиста. Поэтому, если у вас нет прибора, необходимо приобрести цифровой «Мультиметр» — прибор, название которого говорит само за себя. В нем скомпонованы все нужные нам измерительные приборы. Покупка быстро себя окупит, если правильно с ней обращаться. Можно купить самый дешевый цифровой мультиметр, необходимо лишь одно условие — у него должна быть возможность прозванивать полупроводники. Эта функция обозначается специальным значком в виде диода на шкале режимов прибора:
![]() |
Проверка светодиодов
После покупки необходимо проверить СИД на работоспособность. Включаем на мультиметре режим прозвонки полупроводников, касаемся щупами прибора ножек светодиода соблюдая полярность (на приборе плюсовой кабель делают красным). Вглядываясь в линзу СИД, можно увидеть слабое, еле заметное глазу свечение. При отсутствии свечения я считаю, что СИД является условно бракованным и не может быть включен последовательно с другими СИД, так как не будет светиться в последовательной цепи и может спалить здоровые СИД. Как правило, такие СИД светятся только при подключении к нему своего резистора и подачи номинального тока. Эти условно бракованные светодиоды я долго копил (на рынке назад не принимают), потом выбросил. Такая проверка подходит только для стандартных СИД с током до 20mA, т.к. более мощным СИД необходим больший ток для открытия.
![]() |
Обработка светодиодов
Если вам удалось достать СИД с рассеянным светом, то вам повезло и эту часть можно пропустить.
Для увеличения угла рассеивания, я спиливаю часть корпуса СИД и выпиливаю новую линзу, поближе к кристаллу. Таким образом достигается почти 100 градусов рассеивания. Идеальный инструмент для этого — дисковый наждак, а при его отсутствии — напильник. У СИД немного спиливаю боковую юбочку и зажимаю его в маленькие тиски, после чего спиливаю напильником. Даже при небольшом усилии тисков корпус СИД может лопнуть. Я спиливаю примерно до 2 мм до кристалла. Далее шкурим линзу крупной шкуркой, потом нулевкой. В завершение процесса шлифуем линзу, усиленно растирая ее об кусок войлока.
Три варианта подключения
![]() |
На рисунке Q1 и Q2 — светодиоды, R — резистор. Этот вариант имеет самый высокий КПД. Я предпочитаю такой вид подключения, т.к. при нем достаточно одного резистора на два-три СИД (меньше инсталляционной работы по пайке). Минусы такого варианта: при сгорании какого-либо СИД, сгорают и все остальные.
![]() |
На рисунке Q1 и Q2 — светодиоды, R1 и R2 — резисторы. При таком подключении на каждый СИД приходится паять свое сопротивление. Это самый надежный и безопасный вариант, но требует больше инсталляционной работы и больше резисторов.
![]() |
Такая схема недопустима! Два светодиода параллельно включены через один резистор. При таком подключении даже при минимальном разбросе характеристик СИД (а он есть всегда), через них проходит разный ток. Как правило, можно даже увидеть разную яркость свечения. Поэтому для регулирования яркости световых устройств используют не переменное сопротивление (которое регулирует ток), а сложную схему, которая регулирует напряжение.
Расчет цепи
СИД — полупроводниковый прибор, поэтому банальный расчет как для лампы накаливания здесь не подходит. СИД имеет такую характеристику как «Падение Напряжения», ее можно узнать у продавца, если только продавец не слышит такие слова в первый раз в своей жизни. Это значение можно примерно приравнять к двум — трем вольтам. В расчетах цепей с СИД самый главный параметр — сила тока, она не должна превышать номинального тока СИД. Для ограничения тока служит резистор (сопротивление). При правильном подборе сопротивления, СИД можно подключать к любому напряжению.
Примерную величину сопротивления можно рассчитать по формуле, взяв за основу закон Ома.
R(Ом)=(Uакку — Uпад) / I
Где:
R — искомое сопротивление в Омах.
Uакку — напряжение на аккумуляторе в Вольтах. (всегда берем максимум — 14.4 вольта)
Uпад — падение напряжение на СИД в Вольтах. (если СИД включены последовательно, значит сумма падений на всех СИД).
I — номинальный ток СИД в Амперах
Произведем примерный расчет для одного моего светодиода, рассчитанного на 20mA (миллиампер) = 0.02A (ампера), с падением напряжения 3 вольта:
R = (14.4 — 3) / 0.02 = 570 Ом
Произведем примерный расчет для двух таких же светодиодов, подключенных последовательно:
R = (14.4 — (3+3)) / 0.02 = 420 Ом
Произведем примерный расчет для трех таких же светодиодов, подключенных последовательно:
R = (14.4 — (3+3+3)) / 0.02 = 270 Ом
Считаю, что заявленный производителем ток для моих светодиодов 20mA необходимо уменьшить до 15-18mA, потому что все светодиоды имеют разбросы по характеристикам, и для некоторых из них такой ток будет являться критическим, поэтому при перерасчете сопротивление будет немного большим.
Напоминаю, что эти расчеты были сделаны для МОИХ светодиодов, сейчас полно СИД, на которых падает 1.7 — 7 Вольт.
При покупке резисторов покупаются ближайшие по значению. Для таких малоточных СИД подойдут самые маломощные резисторы. Я покупаю мощностью 0.125 Ватт, отчасти из-за того, что у них удобные по жесткости ножки. Если вам нужна точность, то вот общепринятая формула расчета мощности резистора:
P(ватт) = Uакку * (Uакку / R)
Где:
P(ватт) — искомая мощность в Ваттах.
Uакку — напряжение на аккумуляторе в вольтах. (всегда берем максимум — 14.4 вольта).
R — сопротивление резистора в Омах.
Проверка тока в цепи с помощью мультиметра
В этом процессе необходима предельная аккуратность, т.к. при неправильном подключении можно попалить прибор, светодиоды и блок питания. На данном этапе мы будем использовать «Амперметр». В стандартных мультиметрах, как правило, амперметр разбит на две части: для сильного тока и слабого тока. Соответственно, щуп втыкается в отдельные гнезда на приборе. Необходимо воткнуть в слаботочное гнездо и выставить режим слаботочного амперметра, т.к. показания на нем более точные. Амперметр включается в разрыв цепи, то есть последовательно. При включении амперметра параллельно источнику питания сгорает прибор и источник питания, т.к. амперметр представляет собой короткое замыкание. Необходимо быть предельно внимательным при измерениях: даже если вы чуть-чуть промахнетесь прибором мимо какой-либо ножки и закоротите на другую ножку, то в цепи ток станет большим, в приборе мгновенно сгорит предохранитель, в китайских приборах после этого показания начинают врать. На рисунке изображены светодиод «Q», резистор «R» и показано включение в цепь амперметра «А» и, если потребуется, вольтметра «V».
![]() |
Пайка
Для пайки необходим паяльник с принадлежностями. Обычно, в тех местах, где продают СИД, можно приобрести и паяльник. Лучше всего подойдет маломощный с тонким жалом, не более 60 Ватт. Оптимальным считаю 40-ваттный паяльник. Не покупайте толстый прут припоя и кусок канифоли — это прошлый век. Необходимо приобрести припой, который делают тонким как проволока, намотанным на маленькую катушку. Этот припой уже содержит внутри себя флюс (намного лучше, чем канифоль).
Ножки СИД имеют квадратное сечение, как правило 3-х локальных сгибаний достаточно, чтобы она отломилась. Не рекомендуется гнуть ножки около самого корпуса, необходимо сгибать после специальных утолщений на ножке. Перед пайкой надо дождаться полного разогрева паяльника, капелька олова должна растекаться по рабочей поверхности жала. Если этого не происходит, необходимо зачистить жало и снова плавить им олово с флюсом, пока не облудится рабочая поверхность. Перед пайкой элементы необходимо зачистить до блеска металла и облудить их ножки. В момент пайки можно одновременно к спаиваемым ножкам поднести припой или заранее расплавить припой на жале, но здесь нужна быстрота, т.к. флюс испаряется очень быстро. Рекомендую хорошо прогревать место пайки, чтобы прогрелись все спаиваемые элементы. Пайка без флюса невозможна и только портит нервы. Функции флюса — покрывать поверхность и не давать ей мгновенно окисляться. При правильно поставленном процессе олово мгновенно окутывает место пайки и, остыв, остается красивым и блестящим. Если пайка имеет серый цвет и неравномерную поверхность, значит у вас плохое олово, плохой флюс или перегретый паяльник. Для бытовых целей нет смысла покупать дорогостоящий паяльник с автоматическим поддержанием температуры, поэтому, во избежание перегрева паяльника, включайте его, например, через удлинитель «пилот», в котором есть кнопка выключения, оперируя которой можно поддерживать оптимальную температуру жала. В вашей работе очень помогут маленькие тисочки, ведь у человека всего две руки, а надо держать паяльник, два спаиваемых элемента и пруток припоя.
Фиксация светодиодов
После пайки и установки конструкций на основе СИД, необходимо их зафиксировать и защитить от влаги (если требуется). При отсутствии фиксации, если проводники оставлены длинными, то от сильной вибрации они могут переломиться. Влага губительно действует на ножки элементов и места паек. Я использую два типа материалов. Поксипол (эпоксидная смола) стоит примерно 200р и всегда пригодится в домашнем хозяйстве. Продается в виде двух маленьких тюбиков, удобен в применении. Смешиваю пару капелек и наношу на нужные места с помощью зубочистки. Термоклей — это полимер, который принимает жидкое состояние при нагревании. Продается в виде цилиндрических палочек, которые заправляются в специальный электрический термопистолет. На рисунке изображены используемые мною расходные материалы.
Определяем режим работы
Чтобы определить светодиоды, которые не в номинальном режиме, а в заниженном или завышенном, то необходимо узнать тип диодов и вычислить суммарную потребляемую мощность и световой поток. Полученные данные сопоставляем с характеристиками светодиодной лампы, в результате чего делаем выводы. Основная проблема, это невозможность определить модель диода из-за наличия матовой колбы. Один из выходов, это найти такие же у другого продавца (например, если покупаете на Aliexpress), у которых указан тип диодов или есть фото без колбы.
существуют ли снипы и санпины разрешающие использование светодиодного освещения в д/садах и школах. какая ситуация поданному вопросу у наших зарубежных партнёров.
Если параметры светодиодных ламп соотвествуют требованиям санпина, то использовать можно. По уровню пульсаций и другим. Как дела с этим обстоят за рубежом, не интересовался.
Классификация
Принцип работы светодиода: параметры и характеристики
Как проверить светодиод мультиметром – все возможные способы в одной статье