Arco-systems.ru

Журнал Арко Системс
49 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Две одиночные секционированные выключателем системы шин

Последние публикации

Разное

Дизайн интерьера

Стройматериалы

Технологии

Технологии в строительстве

  • Анализ и оценка приносящей доход недвижимости
  • Архитектурные памятники Санкт-Петербурга
  • Инженерные сети городов и населенных пунктов
  • Конструкционные материалы металлы
  • Основы сметного дела в строительстве
  • Оценка стоимости недвижимости
  • Перепланировка, ремонт и дизайн квартиры
  • Печи, камины, бани, сауны
  • Плитка, керамогранит, камень, другие природные и искусственные материалы
  • Практические рекомендации по строительству и покупке собственного жилья
  • Проектирование чистых помещений
  • Руководство по техническому обслуживанию холодильных установок
  • Схемы и подстанции электроснабжения
  • Технология чистых помещений
  • Центральные системы кондиционирования воздуха в зданиях

Познавательно

  • Дефекты бетонных конструкций
  • Евроремонт своими руками
  • Лакокрасочные материалы
  • Металлические конструкции
  • Отделочные работы
  • Полимерные материалы в народном хозяйстве
  • Производство оконных и дверных блоков
  • Строительные материалы
  • Строительство
  • Стройматериалы
  • Технология, устройство, монтаж, подключение и обслуживание теплого пола

Рис. 3.4,4. Схема с двумя одиночными секционированными системами шин (ТСН при постоянном оперативном токе подключаются к сборным шинам)

Рис. 3.4.5. Схема с четырьмя одиночными секционированными системами шин

Рис. 3.4.6. Схема с одной секционированной и обходной системами шин с обходным (Q1)

и секционным (Q2) выключателями

В схеме с двумя системами сборных шин каждое присоединение содержит выключатель, два шинных разъединителя и линейный разъединитель. Системы шин связываются между собой через шиносоединительный выключатель (рис. 3.4.7). Возможны два принципиально разных варианта работы этой схемы. В первом варианте одна система шин является рабочей, вторая — резервной. В нормальном режиме работы все присоединения подключены к рабочей системе шин через соответствующие шинные разъединители. Напряжение на резервной системе шин в нормальном режиме отсутствует, шиносоединительный выключатель отключен. Во втором варианте, который в настоящее время получил наибольшее применение, вторую систему сборных шин используют постоянно в качестве рабочей в целях повышения надежности электроустановки. При этом все присоединения к источникам питания и к отходящим линиям распределяют между обеими системами шин. Шиносоединительный выключатель в нормальном режиме работы замкнут. Схема называется «две рабочие системы шин».

Схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в рабочем состоянии все присоединения. Для этого все присоединения переводят на одну систему шин путем соответствующих переключений коммутационных аппаратов. Данная схема является гибкой и достаточно надежной.

Недостатки схемы с двумя системами шин:

• при ремонте одной из систем шин на это время снижается надежность схемы;

Рис. 3.4.7. Схема с двумя системами шин с шиносоединительным выключателем Q1

• при замыкании в шиносоединительном выключателе отключаются обе системы шин;

• ремонт выключателей и линейных разъединителей связан с отключением на время ремонта соответствующих присоединений;

• сложность схемы, большое число разъединителей и выключателей. Частые переключения с помощью разъединителей увеличивают вероятность повреждений в зоне сборных шин. Большое число операций с разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочных действий обслуживающего персонала.

Схему «две рабочие системы шин» допускается применять в РУ 110—220 кВ при числе присоединений от 5 до 15, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время.

В РУ 110—220 кВ при числе присоединений более 15 делят сборные шины на секции с установкой в точках деления секционных выключателей (рис. 3.4.8). При этом должно предусматриваться два шиносоединительных выключателя. Таким образом, распределительное устройство делится на четыре части, связанные между собой двумя секционными и двумя шиносоединительными выключателями. Данная схема называется «две рабочие секционированные выключателями системы шин». Она используется при тех же условиях, что и схема «две рабочие системы шин».

Рис. 3.4.8. Схема с двумя секционированными системами шин с двумя шиносоединительными (Ql, Q2) и двумя секционными (Q3, Q4) выключателями

Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями обеспечивает возможность поочередного ремонта выключателей без перерыва в работе соответствующих присоединений (рис. 3.4.9). Схема рекомендуется к применению в РУ 110—220 кВ при числе присоединений от 5 до 15. В нормальном режиме работы обе системы шин являются рабочими, шиносоединительный выключатель находится во включенном положении.

Схема с двумя системами шин с фиксированным присоединением элементов (рис. 4).

Присоединение подключается к системам шин через один выключатель и два шинных разъединителя, с помощью которых оно может подключаться к одной из двух систем шин. В целях обеспечения избирательной (селективной) работы защиты шин (см. ниже) каждое присоединение закреплено (зафиксировано) за одной из систем шин. Наличие двух шинных разъединителей на присоединение позволяет выводить в ремонт систему шин без отключения линий и трансформаторов, переводя их предварительно на другую систему шин. Порядок операций при этом следующий. При включенном шиносоединительном выключателе (ШСВ) Q5 поочередно включаются разъединители всех присоединений на остающуюся в работе систему шин, затем также поочередно отключаются разъединители, соединяющие присоединения (кроме ШСВ) с отключаемой системой шин. Далее отключаются ШСВ Q5 и его шинные разъединители, и освобожденная система шин может быть выведена в ремонт.
Схема позволяет переводить присоединения с одной системы шин на другую для уменьшения перетока через ШСВ, при неисправности шинного разъединителя одного из присоединений и т. д. В указанных случаях защита шин должна работать в режиме нарушенной фиксации.
При необходимости вывода в ремонт ШСВ или по другим системным соображениям допускается раздельная работа систем шин с отключенным ШСВ. Однако во многих случаях это приводит к резкому изменению расчетных режимов выбора уставок релейной защиты прилежащей сети и как следствие — к возможным неправильным действиям защит. Поэтому допустимость такого режима должна предварительно оцениваться. Режим допустим всегда при двух и в большинстве случаев при трех питающих источниках на защищаемой подстанции. При необходимости отключения ШСВ и недопустимости раздельного режима работы систем шин все присоединения переводятся на одну систему шин либо системы шин объединяются включением обоих шинных разъединителей на двух-трех присоединениях.
К недостаткам схемы относится возможность одновременного аварийного отключения обеих систем шин, например при разрушении одного из шинных разъединителей в процессе оперативных переключений при переводе присоединений с одной системы шин на другую.

  • Астрономия
  • Биология
  • Биотехнологии
  • География
  • Государство
  • Демография
  • Журналистика и СМИ
  • История
  • Лингвистика
  • Литература
  • Маркетинг
  • Менеджмент
  • Механика
  • Науковедение
  • Образование
  • Охрана труда
  • Педагогика
  • Политика
  • Право
  • Психология
  • Социология
  • Физика
  • Химия
  • Экология
  • Электроника
  • Электротехника
  • Энергетика
  • Юриспруденция
  • Этика и деловое общение

Строительство Две системы сборных шин с обходной

Секционированная система сборных шин с обходной

Обходная система шин позволяет на время ремонта выключателя какого-либо присоединœения заменить его обходным выключателœем.

Применяется на напряжениях 110 – 500 кВ. ОВ позволяет без перерыва питания вывести в ремонт выключатель любого присоединœения. ШСВ (шиносоединительный выключатель) – без перерыва питания переводить присоединœения с одной системы шин на другую и выводить в ремонт одну из СШ.

1. При КЗ на одной системе шин теряется только половина присоединœений.

2. При выводе в ремонт одной системы шин питание присоединœений переводится на вторую без перерыва питания.

3. В случае если требуется вывод в ремонт выключателя одного из присоединœений, его заменяют обходным без перерыва питания.

1. При КЗ на линии и отказе ее выключателя должно сработать УРОВ (устройство резервирования отказа выключателя) и отключить всœе выключатели той системы шин, к которой подключено поврежденное присоединœение.

2. При КЗ на одной из СШ теряется половина присоединœений, а если при этом произошел отказ ШСВ, то теряются всœе присоединœения.

Полуторная схема сборных шин

Схема еще носит название “3/2” – 3 выключателя на 2 присоединœения.

а) полуторная схема сборных шин без чередования присоединœений

1. При КЗ на одной из СШ отключаются выключатели 1-го или 3-го ряда, а всœе присоединœения остаются в работе.

2. При выводе в ремонт I или II СШ не требуется сложных переключений. Необходимо отключить выключатели 1-го или 3-го ряда.

3. При КЗ на линии отключаются 2 её выключателя и в случае отказа одного из них либо гасится система шин без потери присоединœений, либо теряется одна линия или один генератор.

4. При ремонте одной из СШ и КЗ на другой потери питания присоединœений не происходит. При этом блоки выделяются каждый на свою линию.

1. Дороже, чем всœе предыдущие схемы, т.к. содержит в полтора раза больше выключателœей.

2. Большие эксплуатационные расходы за счет большого объема ремонтных работ, так как при каждом отключении присоединœения отключаются 2 выключателя – большой износ выключателœей.

3. В случае если в ремонте находится один из выключателœей 1-го или 3-го ряда и возникло КЗ на одном из присоединœений, то теряем второе присоединœение этого поля.

4. Большая сложность релœейной защиты.

б) полуторная схема с чередованием присоединœений

Преимущество данной схемы перед предыдущей состоит в том, что при ремонтах выключателœей 2-го ряда и при отказе выключателœей 1-го или 3-го ряда при КЗ на линии количество потерь блока будет в 2 раза меньше. При отказе выключателя произойдет погашение системы шин и потеря присоединœения, выключатель которого ремонтируется. При этом, поврежденная линия может быть отключена разъединителœем и питание системы шин вместе с потерянным присоединœением восстановлено.

В случае если в схеме количество цепочек выключателœей будет больше 5, то шины рекомендуется секционировать выключателœем.

Благодаря высокой надежности и гибкости схема находит широкое применение в распредустройствах (РУ) 330 – 750 кВ на мощных электростанциях.

На узловых подстанциях такая схема применяется при числе присоединœений восœемь и более. При меньшем числе присоединœений линии включаются в цепочки из трех выключателœей, а трансформаторы присоединяются к шинам без выключателœей, образую блок трансформатор – шины.

Схема с двумя системами шин и четырьмя выключателями на три присоединœения (схема 4/3)

Схема наиболее эффективна, если число линий в 2 раза меньше или больше числа источников.

Имеет всœе достоинства полуторной схемы, а кроме того:

1. Более экономична (1,33 выключателя на присоединœение вместо 1,5);

2. Секционирование сборных шин требуется при числе присоединœений 15 и более;

Читать еще:  Выключатель массы 12в зил

3. Надежность схемы практически не снижается, если в цепочке будут присоединœены две линии и один трансформатор вместо одной линии и дух трансформаторов.

1. Все недостатки, которые присущи схеме 3/2;

2. По причине того, что в этой схеме выключателœей среднего ряда в 2 раза больше, чем в схеме 3/2, то при отказах этих выключателœей вероятность потери второго присоединœения будет выше.

Схема может выполняться с 1, 2, 3 или 4-х рядным расположением выключателœей. Наиболее удачным является двухрядное расположение выключателœей:

LR ставятся для компенсации емкостного тока, генерируемого ЛЭП на 500 кВ и выше.

Страница 1 из 1[ Сообщений: 7 ]

Отличие секции шин, сборной шины, системы шин между собой

Отличие секции шин, сборной шины, системы шин между собой

Всем привет! Учусь в университете, второй год мучает вопрос чем отличается секция шин, сборная шина и система шин между собой? В интернете однозначного определения не нашел, в литературе тоже. Везде расплывчатые понятия, без конкретики. Сделал небольшой рисунок, чтобы нам понятнее было говорить.

К примеру, из учебника Рожковой. Электрооборудование станций и подстанций. Глава 5. Главные схемы электростанций и подстанций. стр. 388.
Цитата: «При трех или более секциях сборных шин ГРУ устанавливаются два трансформатора связи. Это позволяет создать симметричную схему и уменьшить перетоки мощности между секциями при отключении одного генератора». Что автор имел ввиду под секцией сборных шин?

В качестве примера, выдержка из ГОСТ Р 51321.1-2000 «Устройства комплектные низковольтные распределения и управления. Часть 1. УСТРОЙСТВА, ИСПЫТАННЫЕ ПОЛНОСТЬЮ ИЛИ ЧАСТИЧНО. Общие технические требования и методы испытаний»:

2.1.4 шина: Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
2.1.4.1 сборная шина: Шина, к которой могут быть присоединены одна или несколько распределительных шин и/или блоков ввода или вывода.
2.1.4.2 распределительная шина: Шина в пределах одной секции НКУ, соединенная со сборной шиной и питающая устройство вывода.

( моё примечание : здесь понятие «секция» подразумевает другое, а именно:
2.2.1 секция (см. рисунок С.4): Часть НКУ между двумя последовательными вертикальными перегородками.
— так что не путаем с понятием «секция шин» применительно к нашему вопросу).

2.3.4 система сборных шин (шинопровод) (см. рисунок С7): Устройство, представляющее собой систему проводников, состоящее из шин, установленных на опорах из изоляционного материала и в каналах, коробах или подобных оболочках, и прошедшее типовые испытания (МЭС 441-12-07, с изменением).
Устройство может состоять из следующих элементов:
— прямые секции с узлами ответвления или без них;
— секции для изменения положения фаз, разветвления, поворота, а также вводные и переходные;
— секции ответвленные.
Примечание — Термин «шинопровод» не определяет геометрическую форму, габариты и размеры проводников.

Если дальше копнуть ГОСТы, можно будет и для электротехнических устройств высокого напряжения найти подобные определения, но думаю, что они будут очень близки к вышеприведённым.

Прохожий, благодарю вас за ответ. Более менее понятно становится. А я столько времени потратил, чтобы разобраться. У двоих преподов спрашивал (правда они на кафедре электроснабжения работают, а не на кафедре станции и подстанции).

Из сказанного вами не понял вот этого предложения: «Секция — это участок сборных шин с одним потенциалом.» Если взять рисунок выше. То получается, что на 1 секции шин 3 фазы. Разность потенциалов между этими 3 мя фазами будет присутствовать. Для линии 10 кВ разность потенциалов между этими 3 мя фазами будет равна линейному напряжению, то есть 10 кВ. Какой же здесь один потенциал? 3 фазы, 3 разных потенциала будут. Хотя это переменное напряжение, может я что то путаю.

Формы секционирования

Существует 7 общепринятых форм секционирования НКУ.

Форма 1 – Без разделения на блоки.

Форма 2 – Функциональные блоки отделены от системы шин. Также различают два типа данной формы (2a – Клеммы для присоединения внешних проводников никак не отделены от сборных шин; 2b – Клеммы для присоединения внешних проводников находятся отдельно от сборных шин)

Форма 3 – Функциональные блоки отделены от системы шин, Зажимы для присоединения внешних проводников отделены от функциональных ячеек. (3a – Клеммы для присоединения внешних проводников не отделяются от сборных шин; 3b – Клеммы для присоединения внешних проводников находятся отдельно от сборных шин)

Форма 4 – Функциональные блоки отделены от системы шин, а также разделены между собой. Зажимы для внешних проводников одного блока отделены от зажимов других блоков и от сборных шин. (4a – Клеммы для присоединения внешних проводников находятся в той же секции, где и функциональный блок; 4b – Клеммы находятся отдельно от функционального блока и друг от друга)

Формы 2b, 3b, 4b обеспечивают наиболее безопасное подключение внешних проводников, так как клеммы отделены от силовых шин.
Состав ячеек
В составе функциональных блоков может находиться различное оборудование: контакторы, автоматы и выключатели нагрузки, микропроцессорные блоки релейной защиты и прочие элементы управления и автоматики. В состав одного функционального блока может входить несколько элементов, отвечающих за одну задачу.
Одно распределительное устройство может включать в себя функциональные блоки различных размеров, типов и мощности. Органы индикации и управления вынесены на лицевую панель, что позволяет осуществлять контроль и управление не открывая дверей. Возможно стационарное и выдвижное исполнение функциональных блоков.

СТАЦИОНАРНЫЕ БЛОКИ

Ячейка принимает вид определённой формы секционирования. Коммутационные аппараты крепятся на монтажную плату и присоединяются к силовым шинам проводами или изолированной гибкой шиной. Такие блоки могут быть оснащены втычными или выкатными автоматическими выключателями.
Ниже изображён пример не выкатного исполнения НКУ с секционированием нашего производства на ток 2500А.

ВЫДВИЖНЫЕ БЛОКИ

В отличие от стационарных блоков, выдвижные позволяют реализовывать «горячую» замену всего функционального блока, а не какого-то отдельного аппарата. Они сводят к минимуму риски ошибок персонала при эксплуатации. Подключение происходит через разъемные контактные соединения и могут находиться в трёх возможных положениях:
— «Вкачено» (функциональный блок установлен в рабочем положении, контакты силовых и вторичных цепей замкнуты, а механическая блокировка не позволяет извлечь блок);
— «Проверка (тест)» (Среднее положение блока. Силовые цепи разомкнуты, а вторичные замкнуты. В данном положении производится проверка оборудования);
— «Выкачено» (Силовые и вторичные цепи разомкнуты, функциональный блок может быть полностью извлечён со всем оборудованием)

На нашем производстве изготавливаются шкафы с разной формой секционирования. Щиты 0 4кв с секциями выкатного исполнения ячеек. РУНН нашей сборки с номинальным током 5000А.

СОДЕРЖАНИЕ

  • 1
  • 2
  • 3
  • 4
  • » .
  • 89

Эксплуатация электрических подстанций и распределительных устройств

Состояние отечественной электроэнергетики в последние 15 лет характеризуется стремительным ростом количества и мощности потребителей электроэнергии, который значительно опережает замедленное развитие генерирующего оборудования и электрических сетей.

В условиях нехватки генерирующих мощностей, наличия изношенного оборудования электростанций и подстанций, плачевного состояния магистральных и распределительных электросетей электросетевые компании фактически ведут борьбу за выживание. В ряде случаев объекты электросетевого хозяйства просто становятся бесхозными (например, в зоне ответственности ОАО «МРСК Северо-Запада» в 2009 г. выявлено 1656 таких объектов — воздушных и кабельных линий электропередачи 0,4 и 10 кВ, а также комплектных трансформаторных подстанций). Необходимого запаса в 10–15 % мощностей для устойчивой работы энергосистем уже нет, а существующий минимальный резерв может быть исчерпан в ближайшие годы («Энергетика и промышленность России». 2006. № 6, 2009. № 19).

В период экстенсивного развития электрических сетей, начатого в 60-е годы прошлого века, главное внимание уделялось упрощенным решениям, таким как ввод однотрансформаторных подстанций, организация их одностороннего питания, сооружение ВЛ на механически непрочных деревянных опорах, применение упрощенных и ненадежных механических устройств релейной защиты и автоматики и т. д. В результате в 80-е годы была достигнута высокая плотность электрических сетей с упрощенными, недостаточно надежными элементами и экономически все менее эффективными и морально устаревшими основными фондами.

С другой стороны, если ранее (до создания РАО «ЕЭС России») при проектировании электрических сетей и решении вопросов надежности и экономичности их работы за основу брались технические данные об установленной (трансформаторной) мощности и единовременных нагрузках источников и приемников электроэнергии, длине линии электропередачи, объемах и потерях вырабатываемой и потребляемой электроэнергии, износе оборудования и т. п., то в период деятельности холдинга основными факторами стали размеры инвестиционных вливаний в энергетику, биржевые котировки акций энергопредприятий и другие чисто коммерческие показатели.

В настоящее время стало очевидным, что такой подход к решению проблем в электроэнергетической отрасли не только себя не оправдал, но, помимо все большего износа энергетического оборудования, привел к широкомасштабным авариям, массовым хищениям электроэнергии, введению несуразно большой платы за технологическое присоединение к электрическим сетям и к ряду других негативных явлений.

Чем больше потребителей электрической энергии подключаются к сетям энергоснабжающих организаций, тем больше увеличивается дефицит мощности генерирующего оборудования. В условиях такого дефицита мощности присоединение потребителей к электросетям возможно только при строительстве новых или модернизации существующих генерирующих источников. Для этого нужны огромные средства. Поэтому с целью ликвидации дефицита мощности для потребителей электрической энергии была введена непомерно высокая плата за подключение к электросетям. Это, в свою очередь, вызвало масштабный рост хищений электроэнергии и, соответственно, привело к очередному витку увеличения дефицита мощности из-за неучтенных нагрузок.

Высокий физический и моральный износ электрооборудования, отсутствие новых научно- исследовательских и конструкторских разработок в области оборудования электростанций, подстанций и электрических сетей, в том числе средств релейной защиты, автоматики и микропроцессорной техники вызывают справедливые нарекания со стороны обслуживающего оперативного и оперативно-ремонтного персонала энергетических предприятий.

В этих условиях особую роль приобретают вопросы улучшения организации и повышения качества технического обслуживания и ремонта энергетического оборудования, которым и посвящена настоящая книга.

Большой вклад в систематизацию вопросов эксплуатации оборудования электрических подстанций внесли ведущие отечественные специалисты в этой области А. А. Филатов, А. В. Белецкий и другие.

Книги А. А. Филатова [21–24] до сих пор являются настольным учебно-производственным пособием для оперативного и оперативно-ремонтного персонала подстанций и распределительных устройств высокого напряжения. Именно поэтому при формировании структуры и содержания данной книги использованы материалы указанных выше трудов А. А. Филатова. Вместе с тем, с учетом требований новых и переработанных нормативно-технических документов в области технического обслуживания и ремонта энергетического оборудования, выпущенных в последние годы (в частности, правил технической эксплуатации, правил устройства электроустановок и др.), в книгу включен обширный дополнительный материал, составивший ряд новых глав и разделов.

Читать еще:  Выключатель вмт 110 схема

Книга состоит из введения, тринадцати глав, перечня принятых сокращений и списка литературы.

В главе 1 приведены общие требования к организации работ по техническому обслуживанию электрических подстанций и распределительных устройств; рассмотрены структура и система организации электроэнергетической отрасли, структура оперативно-диспетчерского управления; дана классификация понятий и описана нормативно-техническая документация по эксплуатации электрических подстанций и распределительных устройств.

Глава 2 посвящена собственно вопросам эксплуатации оборудования подстанций, главным образом, силовых трансформаторов и автотрансформаторов.

В главах 3–8 рассмотрены особенности технического обслуживания синхронных компенсаторов, масляных и воздушных выключателей, разъединителей, отделителей и короткозамыкателей, измерительных трансформаторов тока и трансформаторов напряжения, конденсаторов связи, разрядников, ограничителей перенапряжения, реакторов и кабелей, элементов распределительных устройств, цепей оперативного тока и устройств релейной защиты и автоматики.

В главе 9 описаны методы и порядок выполнения фазировки в электрических сетях.

В главе 10 изложены порядок и последовательность выполнения оперативных переключений на подстанциях.

Глава 11 посвящена вопросам предупреждения и устранения аварийных ситуаций в электрических сетях, порядку организации работ при ликвидации аварий, анализу причин возникновения аварийных ситуаций, а также действиям персонала при аварийном отключении оборудования подстанций и электрических сетей.

В главе 12 дан перечень необходимой оперативной документации.

В главе 13 изложены принципы организации работы с персоналом энергетических предприятий, регламентированные действующими правилами и нормами.

Книга адресована административно-техническому, оперативному и оперативно-ремонтному персоналу энергетических предприятий, связанному с организацией и выполнением работ по техническому обслуживанию, ремонту, наладке и испытанию оборудования электрических подстанций и распределительных устройств.

Глава 1. Общие требования к организации работ по техническому обслуживанию электрических подстанций и распределительных устройств

1.1. Структура электроэнергетической отрасли

1. РАЗБОРНЫЕ КОНТАКТНЫЕ СОЕДИНЕНИЯ

1. Технология выполнения соединений

1.1. Разборные (болтовые) контактные соединения в зависимости от материала соединяемых шин и климатических факторов внешней среды подразделяются на соединения:

а) без средств стабилизации электротехнического сопротивления;

б) со средствами стабилизации электрического сопротивления.

1.2. Контактные соединения шин из материалов медь-медь, алюминиевый сплав алюминиевый сплав, медь-сталь, сталь-сталь для групп А и Б, а также из материалов алюминиевый сплав-медь и алюминиевый сплав-сталь для группы А не требуют применения средств стабилизации электрического сопротивления. Соединения выполняются непосредственно с помощью стальных крепежных деталей (рис.1 а).

Рис. 1. Разборные контактные соединения

1 — шина медная, из алюминиевого сплава или стали; 2 — алюминиевая шина; 3 — стальная шайба; 4 — тарельчатая пружина; 5 — стальной болт; 6 — стальная гайка; 7 — болт из цветного металла; 8 — гайка из цветного металла; 9 — шайба из цветного металла; 10 — металлопокрытие; 11 — шина медная, алюминиевая, из алюминиевого сплава или стали; 12 — медно-алюминиевая пластина; 13 — пластина из алюминиевого сплава; 14 — шина из алюминиевого сплава

1.3. Контактные соединения шин из материалов алюминий-алюминий, алюминиевый сплав-алюминий для групп А и Б, а также из материалов алюминий-медь и алюминий-сталь для группы А следует выполнять с помощью одного из средств стабилизации сопротивления:

а) тарельчатых пружин по ГОСТ 3057 (рис. 1 б);

б) крепежных изделий из меди или ее сплава (рис. 1 в);

в) защитных металлических покрытий по ГОСТ 21.484, наносимых на рабочие поверхности шин или электропроводящей смазкой типа ЭПС-98 (рис 1 г);

г) переходных медно-алюминиевых пластин по ГОСТ 19357 (рис. 1 д);

д) переходных пластин из алюминиевого сплава (рис. 1 е).

1.4. Для группы Б контактные соединения шин из материалов алюминиевый сплав-медь, алюминиевый сплав-сталь, следует выполнять как показано на рис. 1 д, е; из материалов алюминий-медь, алюминий-сталь — как показано на рис. 1 б, в, д, е.

Рабочие поверхности шин и пластин из алюминия и алюминиевого сплава должны иметь защитные металлопокрытия.

1.5. Пластины из алюминиевого сплава и алюминиевые части медно-алюминиевых пластин следует соединять с алюминиевыми шинами сваркой. Разборные соединения переходных пластин с медными шинами необходимо выполнять с помощью стальных крепежных деталей.

1.6. Расположение и диаметр отверстий для соединения шин шириной до 120 мм приведены в табл. 1.

Зависимость диаметра отверстия в шинах от диаметра стягивающих болтов следующая:

Диаметр болта, мм

Диаметр отверстия в шинах, мм

Таблица 1

* Примечание только при соединении пакетов шин

1.7. Контактные участки шин шириной 60 мм и более, имеющие два отверстия в поперечном ряду, рекомендуется выполнять с продольными разрезами. Ширина разреза зависит от способа его выполнения и должна быть не более 5 мм.

2. Подготовка к сборке разборных соединений

2.1. Подготовка шин для разборного соединения состоит из следующих операций: выполнение отверстий под болты, обработка контактных поверхностей и, при необходимости, нанесение металлопокрытия.

2.2. Расположение и размеры отверстий под болты должны соответствовать указанным в п. 1.6.

2.3. При массовой заготовке шин рекомендуется вырубку отверстий производить на прессах. Одновременная вырубка нескольких отверстий

может быть осуществлена с помощью специальных приспособлений. При вырубке отверстий с применением упора и кондукторов разметку производить не следует.

2.4. Длину болтов для соединения пакета шин необходимо выбирать по табл. 2. На болтах после сборки и затяжки соединений должно оставаться не менее двух ниток свободной резьбы.

Таблица 2

Длина болтов для соединения пакетов шин:

Толщина пакета шин в соединении, мм

Длина болтов, мм

алюминиевых с алюминиевыми

алюминиевых с медными или с шинами из алюминиевого сплава

медных или стальных

2.5. Контактные поверхности шин необходимо обрабатывать в следующем порядке: удалить бензином, ацетоном или уайт-спиритом грязь и консервирующую смазку, у сильно загрязненных шин гибкой ошиновки кроме очистки внешних повивов после расплетки очистить внутренние повивы; выправить и обработать под линейку на шинофрезерном станке (при наличии вмятин, раковин и неровностей); удалить посторонние пленки ручным электроинструментом со специальным зачистным кругом, или другими насадками и приспособлениями для механизированных инструментов. Зачистку шин в мастерских электромонтажных заготовок рекомендуется производить на станке 3Ш-120. При зачистке алюминия применять шлифовальные круги не допускается. Не следует применять напильники и стальные щетки для одновременной обработки шин из различных материалов.

2.6. Для удаления окисных пленок рабочие поверхности следует зачищать. По окончании зачистки шин из алюминия или алюминиевого сплава на их поверхность необходимо нанести нейтральную смазку (вазелин КВЗ, ГОСТ 15975; ЦИАТИМ-221, ГОСТ 9433; ЦИАТИМ-201, ГОСТ 6267; электропроводящую смазку ЭПС-98 ТУ 0254-002-47926093-2001 или другие смазки с аналогичными свойствами). Рекомендуемое время между зачисткой и смазкой — не более 1 ч.

2.7. Способы и технология нанесения металлопокрытий на контактные поверхности шин даны в Приложении 8.

2.8. Поверхности, имеющие защитные металлические покрытия, в случае загрязнения перед сборкой следует промыть органическими растворителями (бензином, уайт-спиритом и т.д.).

Луженые медные желобки, предназначенные для закрепления медных шин в петлевых зажимах, необходимо промывать растворителем и покрывать слоем нейтральной смазки (вазелин КВЗ, ГОСТ 15975; ЦИАТИМ-201, ГОСТ 6267; ЦИАТИМ-221, ГОСТ 9433; электропроводящую смазку ЭПС-98 ТУ 0254-002-47926093-2001 или другими смазками с аналогичными свойствами). Зачищать такие желобки наждачной бумагой не следует.

2.9. Допускается наносить металлопокрытия на отрезки шин (пластин), которые затем приваривают к шинам на монтаже. Длина покрываемого отрезка шины (пластины) в зависимости от длины этого отрезка должна быть:

ПУЭ Раздел 4 => Таблица 4.2.7. Наименьшие расстояния в свету от токоведущих частей до различных элементов зру. (подстанций) 3-330 кв.

Таблица 4.2.7

Наименьшие расстояния в свету от токоведущих частей до различных элементов ЗРУ

(подстанций) 3-330 кВ, защищенных разрядниками, и ЗРУ 110-330 кВ, защищенных ограничителями перенапряжений 1 , (в знаменателе) (рис. 4.2.14-4.2.17)

Изоляционное расстояние, мм, для номинального напряжения, кВ

От токоведущих частей до заземленных конструкций и частей зданий

Между проводниками разных фаз

От токоведущих частей до сплошных ограждений

От токоведущих частей до сетчатых ограждений

Между неогражденными токоведущими частями разных цепей

От неогражденных токоведущих частей до пола

От неогражденных выводов из ЗРУ до земли при выходе их не на территорию ОРУ и при отсутствии проезда транспорта под выводами

От контакта и ножа разъединителя в отключенном положении до ошиновки, присоединенной к второму контакту

От неогражденных кабельных выводов из ЗРУ до земли при выходе кабелей на опору или портал не на территории ОРУ и при отсутствии проезда транспорта под выводами

1 Ограничители перенапряжений имеют защитный уровень коммутационных перенапряжений фаза-земля 1,8 Uф.

4.2.91. Ширина коридора обслуживания КРУ с выкатными элементами и КТП должна обеспечивать удобство управления, перемещения и разворота оборудования и его ремонта.

При установке КРУ и КТП в отдельных помещениях ширину коридора обслуживания следует определять, исходя из следующих требований:

при однорядной установке — длина наибольшей из тележек КРУ (со всеми выступающими частями) плюс не менее 0,6 м;

при двухрядной установке — длина наибольшей из тележек КРУ (со всеми выступающими частями) плюс не менее 0,8 м.

При наличии коридора с задней стороны КРУ и КТП для их осмотра ширина его должна быть не менее 0,8 м; допускаются отдельные местные сужения не более чем на 0,2 м.

При открытой установке КРУ и КТП в производственных помещениях ширина свободного прохода должна определяться расположением производственного оборудования, обеспечивать возможность транспортирования наиболее крупных элементов КРУ к КТП и в любом случае она должна быть не менее 1 м.

Высота помещения должна быть не менее высоты КРУ, КТП, считая от шинных вводов, перемычек или выступающих частей шкафов, плюс 0,8 м до потолка или 0,3 м до балок.

Допускается меньшая высота помещения, если при этом обеспечиваются удобство и безопасность замены, ремонта и наладки оборудования КРУ, КТП, шинных вводов и перемычек.

4.2.92. Расчетные нагрузки на перекрытия помещений по пути транспортировки электрооборудования должны приниматься с учетом массы наиболее тяжелого оборудования (например, трансформатора), а проемы должны соответствовать их габаритам.

Читать еще:  Совмещенный датчик движения с выключателем

4.2.93. При воздушных вводах в ЗРУ, КТП и закрытые ПС, не пересекающих проездов или мест, где возможно движение транспорта и т. п., расстояния от низшей точки провода до поверхности земли должны быть не менее размера Е (табл. 4.2.7 и рис. 4.2.17).

При меньших расстояниях от провода до земли на соответствующем участке под вводом должны быть предусмотрены либо ограждение территории забором высотой 1,6 м, либо горизонтальное ограждение под вводом. При этом расстояние от земли до провода в плоскости забора должно быть не менее размера Е.

При воздушных вводах, пересекающих проезды или места, где возможно движение транспорта и т. п., расстояния от низшей точки провода до земли следует принимать в соответствии с 2.5.212 и 2.5.213.

При воздушных выводах из ЗРУ на территорию ОРУ указанные расстояния должны приниматься по табл. 4.2.5 для размера Г (см. рис. 4.2.6).

Расстояния между смежными линейными выводами двух цепей должны быть не менее значений, приведенных в табл. 4.2.3 для размера Д, если не предусмотрены перегородки между выводами соседних цепей.

На кровле здания ЗРУ в случае неорганизованного водостока над воздушными вводами следует предусматривать козырьки.

4.2.94. Выходы из РУ следует выполнять исходя: из следующих требований:

1) при длине РУ до 7 м допускается один выход;

2) при длине РУ более 7 до 60 м должны быть предусмотрены два выхода по его концам; допускается располагать выходы из РУ на расстоянии до 7 м от его торцов;

3) при длине РУ более 60 м, кроме выходов по концам его, должны быть предусмотрены дополнительные выходы с таким расчетом, чтобы расстояние от любой точки коридора обслуживания до выхода было не более 30 м.

Выходы могут быть выполнены наружу, на лестничную клетку или в другое производственное помещение категории Г или Д, а также в другие отсеки РУ, отделенные от данного противопожарной дверью II степени огнестойкости. В многоэтажных РУ второй и дополнительные выходы могут быть предусмотрены также на балкон с наружной пожарной лестницей.

Ворота камер с шириной створки более 1,5 м должны иметь калитку, если они используются для выхода персонала.

4.2.95. Полы помещений РУ рекомендуется выполнять по всей площади каждого этажа на одной отметке. Конструкция полов должна исключать возможность образования цементной пыли. Устройство порогов в дверях между отдельными помещениями и в коридорах не допускается (исключения — см. в 4.2.100 и 4.2.103).

4.2.96. Двери из РУ должны открываться в направлении других помещений или наружу и иметь самозапирающиеся замки, открываемые без ключа со стороны РУ

Двери между отсеками одного РУ или между смежными помещениями двух РУ должны иметь устройство, фиксирующее двери в закрытом положении и не препятствующее открыванию дверей в обоих направлениях.

Двери между помещениями (отсеками) РУ разных напряжений должны открываться в сторону РУ с низшим напряжением.

Замки в дверях помещений РУ одного напряжения должны открываться одним и тем же ключом; ключи от входных дверей РУ и других помещений не должны подходить к замкам камер, а также к замкам дверей в ограждениях электрооборудования.

Требование о применении самозапирающихся замков не распространяется на РУ городских и сельских распределительных электрических сетей напряжением 10 кВ и ниже.

4.2.97. Ограждающие конструкции и перегородки КРУ и КТП собственных нужд электростанции следует выполнять из негорючих материалов.

Допускается установка КРУ и КТП собственных нужд в технологических помещениях ПС и электростанций в соответствии с требованиями 4.2.121.

4.2.98. В одном помещении РУ напряжением от 0,4 кВ и выше допускается установка до двух масляных трансформаторов мощностью каждый до 0,63 МВ·А, отделенных друг от друга и от остальной части помещения РУ перегородкой из негорючих материалов с пределом огнестойкости 45 мин высотой не менее высоты трансформатора, включая вводы высшего напряжения.

4.2.99. Аппараты, относящиеся к пусковым устройствам электродвигателей, синхронных компенсаторов и т. п. (выключатели, пусковые реакторы, трансформаторы и т. п.) допускается устанавливать в общей камере без перегородок между ними.

4.2.100. Трансформаторы напряжения независимо от массы масла в них допускается устанавливать в огражденных камерах РУ. При этом в камере должен быть предусмотрен порог или пандус, рассчитанный на удержание полного объема масла, содержащегося в трансформаторе напряжения.

4.2.101. Ячейки выключателей следует отделять от коридора обслуживания сплошными или сетчатыми ограждениями, а друг от друга — сплошными перегородками из негорючих материалов. Такими же перегородками или щитами эти выключатели должны быть отделены от привода.

Под каждым масляным выключателем с массой масла 60 кг и более в одном полюсе требуется устройство маслоприемника на полный объем масла в одном полюсе.

4.2.102. В закрытых отдельно стоящих, пристроенных и встроенных в производственные помещения ПС, в камерах трансформаторов и других маслонаполненных аппаратов с массой масла в одном баке до 600 кг при расположении камер на первом этаже с дверями, выходящими наружу, маслосборные устройства не выполняются.

При массе масла или негорючего экологически безопасного диэлектрика в одном баке более 600 кг должен быть устроен маслоприемник, рассчитанный на полный объем масла, или на удержание 20 % масла с отводом в маслосборник.

4.2.103. При сооружении камер над подвалом, на втором этаже и выше (см. также 4.2.118), а также при устройстве выхода из камер в коридор под трансформаторами и другими маслонаполненными аппаратами должны выполняться маслоприемники по одному из следующих способов:

1) при массе масла в одном баке (полюсе) до 60 кг выполняется порог или пандус для удержания полного объема масла;

2) при массе масла от 60 до 600 кг под трансформатором (аппаратом) выполняется маслоприемник, рассчитанный на полный объем масла, либо у выхода из камеры — порог или пандус для удержания полного объема масла;

3) при массе масла более 600 кг:

маслоприемник, вмещающий не менее 20 % полного объема масла трансформатора или аппарата, с отводом масла в маслосборник. Маслоотводные трубы от маслоприемников под трансформаторами должны иметь диаметр не менее 10 см. Со стороны маслоприемников маслоотводные трубы должны быть защищены сетками. Дно маслоприемника должно иметь уклон 2 % в сторону приямка;

маслоприемник без отвода масла в маслосборник. В этом случае маслоприемник должен быть перекрыт решеткой со слоем толщиной 25 см чистого промытого гранитного (либо другой непористой породы) гравия или щебня фракцией от 30 до 70 мм и должен быть рассчитан на полный объем масла; уровень масла должен быть на 5 см ниже решетки. Верхний уровень гравия в маслоприемнике под трансформатором должен быть на 7,5 см ниже отверстия воздухоподводящего вентиляционного канала. Площадь маслоприемника должна быть более площади основания трансформатора или аппарата.

4.2.104. Вентиляция помещений трансформаторов и реакторов должна обеспечивать отвод выделяемого ими тепла в таких количествах, чтобы при их нагрузке, с учетом перегрузочной способности и максимальной расчетной температуре окружающей среды, нагрев трансформаторов и реакторов не превышал максимально допустимого для них значения.

Вентиляция помещений трансформаторов и реакторов должна быть выполнена таким образом, чтобы разность температур воздуха, выходящего из помещения и входящего в него, не превосходила: 15 °С для трансформаторов, 30 °С для реакторов на токи до 1000 А, 20 °С для реакторов на токи более 1000 А.

При невозможности обеспечить теплообмен естественной вентиляцией необходимо предусматривать принудительную, при этом должен быть предусмотрен контроль ее работы с помощью сигнальных аппаратов.

4.2.105. Приточно-вытяжная вентиляция с забором на уровне пола и на уровне верхней части помещения должна выполняться в помещении, где расположены КРУЭ и баллоны с элегазом.

4.2.106. Помещения РУ, содержащие оборудование, заполненное маслом, элегазом или компаундом, должны быть оборудованы вытяжной вентиляцией, включаемой извне и не связанной с другими вентиляционными устройствами.

В местах с низкими зимними температурами приточные и вытяжные вентиляционные отверстия должны быть снабжены утепленными клапанами, открываемыми извне.

4.2.107. В помещениях, в которых дежурный персонал находится 6 ч и более, должна быть обеспечена температура воздуха не ниже +18 °С и не выше +28 °С.

В ремонтной зоне ЗРУ на время проведения ремонтных работ должна быть обеспечена температура не ниже +5 °С.

При обогреве помещений, в которых имеется элегазовое оборудование, не должны применяться обогревательные приборы с температурой нагревательной поверхности, превышающей 250 °С (например, нагреватели типа ТЭН).

4.2.108. Отверстия в ограждающих конструкциях зданий и помещений после прокладки токопроводов и других коммуникаций следует заделывать материалом, обеспечивающим огнестойкость не ниже огнестойкости самой ограждающей конструкции, но не менее 45 мин.

4.2.109. Прочие отверстия в наружных стенах для предотвращения проникновения животных и птиц должны быть защищены сетками или решетками с ячейками размером 10´10 мм.

4.2.110. Перекрытия кабельных каналов и двойных полов должны быть выполнены съемными плитами из несгораемых материалов вровень с чистым полом помещения. Масса отдельной плиты перекрытия должна быть не более 50 кг.

4.2.111. Прокладка в камерах аппаратов и трансформаторов транзитных кабелей и проводов, как правило, не допускается. В исключительных случаях допускается прокладка их в трубах.

Электропроводки освещения и цепей управления и измерения, расположенные внутри камер или же находящихся вблизи неизолированных токоведущих частей, могут быть допущены лишь в той мере, в какой это необходимо для осуществления присоединений (например, к измерительным трансформаторам).

4.2.112. Прокладка в помещения РУ относящихся к ним (не транзитных) трубопроводов отопления допускается при условии применения цельных сварных труб без вентилей и т. п., а вентиляционных сварных коробов — без задвижек и других подобных устройств. Допускается также транзитная прокладка трубопроводов отопления при условии, что каждый трубопровод заключен в сплошную водонепроницаемую оболочку.

4.2.113. При выборе схемы РУ, содержащего элегазовые аппараты, следует применять более простые схемы, чем в РУ с воздушной изоляцией.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector