Arco-systems.ru

Журнал Арко Системс
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Переходное сопротивление контактов выключателя нагрузки

Испытания и измерения выключателей нагрузки

Содержание материала

Выключатели нагрузки представляет собой упрощенный выключатель, предназначенный для включения и отключения токов нагрузки. Для отключения токов перегрузок и коротких замыканий к выключателю могут последовательно подключаться силовые плавкие предохранители с кварцевым заполнением. Предохранители могут быть установлены сверху или снизу выключателя нагрузки. Выключатели нагрузки могут быть снабжены заземляющими ножами. Они заземляют верхние или нижние выводные контакты выключателя и устанавливаются соответственно сверху или снизу выключателя. При наличии предохранителей ножи заземления могут быть установлены за предохранителями.

До начала испытаний необходимо выполнить следующие организационно-технические мероприятия:

— изучить проектную, техническую и заводскую документацию с целью выявления возможных отклонений проектных решений от требований ПУЭ, ПЭЭП и др. нормативно-технических документов;

— проверить соответствие паспортных данных выключателя, привода, предохранителей, трансформаторов тока и аппаратов вторичной цепи проектной и заводской документации, рабочему напряжению сети и рабочему току линии, напряжению и роду источника оперативного тока;

— произвести внешний осмотр оборудования и проверить выполнение электромонтажных работ с целью определения готовности к проведению испытаний.

Все обнаруженные дефекты и недостатки должны быть устранены до начала испытаний.

От чего зависит сопротивление?

При соприкосновении двух проводников, общая площадь и численность площадок зависит как от уровня силы нажатия, так и от прочности самого материала. То есть переходное контактное сопротивление зависит от силы нажатия: чем сила больше, тем оно будет меньше. Только давление следует увеличивать до определенной цифры, так как при больших механических нагрузках переходное сопротивление практически не изменяется. Да и такое сильное давление может привести к деформации, в результате которой контакты могут разрушиться.

2. Определение сопротивлений трансформаторов

Значения (в мОм) полного (zт), активного (rт) и индуктивного (хт) сопротивления понижающего трансформатора приведенных к стороне НН определяются по формулам: 2-8, 2-9, 2-10 [Л3. с. 28].

На большинстве трансформаторов 10(6)/0,4 кВ имеется возможность регулирования напряжения путем переключения без возбуждения (ПБВ) при отключенном от сети трансформаторе как со стороны высшего так и низшего напряжения. Напряжение регулируется со стороны высшего напряжения на величину ±2х2,5% от номинального значения.

Для трансформаторов с пределом регулирования ПБВ ±2х2,5%, полное сопротивление будет изменятся в пределах:

Значения индуктивного и активного сопротивления трансформатора по ГОСТ 28249-93 определяются по формулам:

Как видно, формулы из ГОСТ 28249-93 совпадают с формулами приведенными в [Л3. с. 28].

Для упрощения расчета активного и индуктивного сопротивления тр-ра, можно использовать таблицу 2-4 [Л3. с. 29] для схем соединения обмоток трансформатора Y/Yo и ∆/Yo. Причем для схем соединения обмоток трансформатора ∆/Yo, значения активного (r0) и индуктивного (х0) сопротивления нулевой последовательности равны значениям активного и индуктивного сопротивления прямой последовательности: r0 = rт и х0 = хт.

Читать еще:  Что такое умный выключатель

Определить сопротивление трансформатора ТМ 50/6 со схемой соединения обмоток ∆/Yо.

По справочным данным определяем технические данные трансформатора: Sном. = 50 кВА, Uном.ВН = 6,3 кВ, Uном.НН = 0,4 кВ, Uкз = 4%, ∆Ркз=1,1 кВт.

Определяем полное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-8:

Определяем активное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-9:

Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по формуле 2-10:

5. Основные параметры электромагнитных реле.

Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.

Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.

1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.

Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:

2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.

Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.

3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.

Читать еще:  Как работает электромагнитный привод выключателя

4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.

Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.

5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).

Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.

Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.

Параметры обмотки

Номинальное рабочее напряжение

Каждая модификация отличается количеством витков.

В нашем примере эти напряжения лежат в ряду 3, 4, 5, 6, 9, 12, 24, 36 и 48 Вольт.

Это означает, что один и тот же тип реле можно использовать в широком диапазоне рабочих напряжений.

Соответственно, обмотки, рассчитанные на разные напряжения, имеют разное сопротивление (Coil Resistance), и для их управления требуется различный ток.

Из даташита видим, что, чем больше рабочее напряжение обмотки, тем больше ее сопротивление, и тем меньший ток нужен для переключения контактов.

Интересно отметить, что при разном рабочем напряжении обмотка может потреблять одинаковую мощность.

Так, в нашем случае различные модификации обмоток потребляют мощность около 0,36 Вт при работе с напряжениями 5 – 36 В и около 0,45 Вт при работе с напряжением 48 В.

Напряжение срабатывания

Следует отметить, что реле начинает срабатывать при напряжении меньше номинального.

Напряжение, при котором реле срабатывает, называется напряжением срабатывания (Pick Up Voltage). При этом напряжении якорь притягивается к сердечнику таким образом, что переключает контакты.

При внимательно рассмотрении можно увидеть: если на обмотку подать напряжение меньше напряжения срабатывания, якорь приходит в движение, но не настолько, чтобы переключить контакты.

Часто напряжение срабатывания указывают в процентах от номинального напряжения. Так, в нашем примере напряжение срабатывания составляет величину 75% от номинального рабочего напряжения.

Читать еще:  Технология монтажа автоматического выключателя

Максимальное рабочее напряжение обмотки

Реле будет устойчиво работать и при напряжении обмотки несколько больше номинального. При этом возникают некоторый допустимый перегрев обмотки. Максимальное рабочее напряжение (Maximum Continuous Voltage) также указывается в даташите.

Оно также может указываться в процентах он номинального рабочего напряжения. В нашем примере оно составляет величину 150% от номинального рабочего напряжения.

Иными словами, реле может работать в некотором диапазоне напряжений обмотки. В нашем случае реле, например, с обмоткой 5 В может работать в диапазоне от 3,75 до 7,5 В, а реле с обмоткой 12В — в диапазоне от 9 до 18 В.

Напряжение отпускания

Напряжение отпускания (Drop Out Voltage) — это напряжение обмотки, при котором якорь, будучи ранее притянутым, отпускает.

Напряжение отпускания также может указываться в процентах от номинального рабочего напряжения.

В нашем случае оно составляет величину 10% от номинального.

Т.е. если, например, обмотка рассчитана на номинальное напряжение 5 В, то якорь отпустит при снижении напряжения на обмотке до 0,5 В и менее.

Иногда в справочных данных вместо напряжений срабатывания и отпускания указывают токи срабатывания и отпускания.

Обратите внимание: напряжение срабатывания и напряжение отпускания сильно отличаются!

Иными словами, для удержания реле во включенном состоянии требуется существенно меньше энергии, чем для перевода реле из выключенного состояния во включенное.

Для уменьшения потребляемой от источника питания энергии можно после срабатывания реле уменьшить напряжения на его обмотке до величины, большей напряжения отпускания.

Шунты для контроля протекания тока

Еще одним способом применения резисторов/шунтов является контроль за протеканием тока через цепи управления приводом (см. Рис.5). Шунт с малым сопротивлением включается последовательно с электромагнитом и обтекается его током при каждой операции управления.

Падение напряжения на данном шунте (около 5 В) можно зафиксировать специальным входом терминала и использовать логический сигнал «Наличие тока в цепи управления» в логике. Например, в логике защиты от длительного протекания тока через ЭМ.

Контроль такого напряжения гораздо легче, чем прямой контроль протекающего тока из-за повышенного тепловыделения, при последнем способе.

Данный способ контроля тока применяется в некоторых терминалах НПП «ЭКРА» и НТЦ «Механотроника».

Вот такие есть примеры использования резисторов в цепях управления силовым выключателя. А какие еще примеры знаете вы? Пишите об этом в комментариях)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector