Arco-systems.ru

Журнал Арко Системс
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полупроводниковый выключатель переменного тока

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото — полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:

Фото — обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

полупроводниковые контакторы, тиристорные устройства коммутации

ТРИД ТРС, полупроводниковые контакторы

Полупроводниковые контакторы предназначены для коммутации силовых цепей исполнительных механизмов – нагревателей, осветительных приборов, маломощных электродвигателей и других устройств, работающих на переменном токе. Полупроводниковые контакторы являются готовыми к использованию устройствами, состоящими из мощных полупроводниковых управляющих элементов, установленных на радиатор, схем управления и других вспомогательных элементов – предохранителей, клемм для подключения проводов.

Технические характеристики

Метод управления: Переключение в «0»

Номинальное управляющее напряжение: 4 — 32 В

Максимальный ток утечки в состоянии ВЫКЛ: ≤3 мA

Время отклика на входной сигнал: менее 10 мс

Диапазон рабочих температур: от минус 20 до +70 °С

МодельНоминальный ток нагрузки, АКоммутируемое напряжение, В (АС)Габариты, мм
ТРС-10/230-Р11023080х50х79
ТРС-10/400-Р11040080х50х79
ТРС-15/230-Р11523080х50х79
ТРС-15/400-Р11540080х50х79
ТРС-25/230-Р225230100х50х124
ТРС-25/400-Р225400100х50х124
ТРС-20/230-Р320230125х72х57
ТРС-20/400-Р320400125х72х57
ТРС-40/230-Р340230125х72х57
ТРС-40/400-Р340400125х72х57
ТРС-50/230-Р450230125х100х57
ТРС-50/400-Р450400125х100х57
ТРС-60/230-Р560230100х115х124
ТРС-60/400-Р560400100х115х124
ТРС-100/230-Р6100230125х80х163
ТРС-100/400-Р6100400125х80х163

БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)

Особенность пускателя бесконтакного реверсивного БКР состоит в использовании симисторов для управления асинхронными электродвигателями исполнительных механизмов типа МЭО (задвижки, трехходовые шаровые клапаны и краны, поворотные затворы и т.п.), электромагнитными пусковыми устройствами в системах автоматического регулирования. Это позволяет использовать все преимущества бесконтактного управления, продлевая срок службы механизмов и обеспечивая бỏльшую надёжность.

Функции пускателя бесконтактного реверсивного

  • Бесконтактная (симисторной) коммутация механизмов типа МЭО
  • Формирование сигналов БОЛЬШЕ, МЕНЬШЕ и ЗАПРЕТ
  • Формирование паузы между реверсивными включениями не менее 50 мс
  • Управление электромагнитным ТОРМОЗОМ.
  • Блокировка включения исполнительного механизма при наличии сигнала ЗАПРЕТ с выбором пользователем канала, на который распространяется действие сигнала ЗАПРЕТ

Питание нагрузки220 В +10 % / -15 %, 50 ±1 Гц
Ток по входам в открытом состоянии, не более15 мА
Действующие значения коммутируемого тока:
При 100 % времени включения0,5 А (непрерывно)
При 25 % времени включения2 А (длительность непрерывного включения менее 100 с)
Питание блока от сигнала управления(12…36) В, 30 мА макс.
Пауза между размыканием и замыканием ключей при мгновенном реверсе, не менее0,05 с
Условия эксплуатации
Температура(0…50) °С
Влажность80 % при 35 °С
Габариты(96 × 88 × 42) мм
КорпусКА-Р1
Масса, не более200 г
Гарантия36 месяцев

АПР–пускатель реверсивный трехфазный

Областью применения реверсивного пускателя АПР являются системы управления, регулирования, защитной автоматики, в том числе для газовых котельных.

Блок трех фазного реверсивного пускателя предназначен для:

  • обеспечения смены направления вращения асинхронных трехфазных двигателей, в том числе двигателя управления МЭО (механизм электрический однооборотный), построенных на основе трехфазных асинхронных двигателей;
  • сопряжения выходов автоматики 220 В с трехфазными асинхронными двигателями;
  • питания одного измерителя-регулятора типа АДР, АДН.

Технические характеристики

ПараметрЗначение
Напряжение питания, В170…270
Число фаз питания3
Частота, Гц50 (±1%)
Ток потребления, А0,02
Нагрузка силовая (380 В, 3 фазы):
>> Коммутируемое напряжение. Ср. кв. знач, В170…270
>> Минимальный коммутируемый ток по каждой фазе, А0,2
>> Максимальный коммутируемый ток по каждой фазе, А2
>> Максимальный импульсный ток(tимп = 10 мс), А20
>> Ток утечки на выходе, мА2,3
Напряжение изоляции между управляющими и коммутируемыми цепями, VAC1500
Управление «ВПЕРЁД», «НАЗАД» при помощи сигналов 220 В
>> Напряжение, подаваемое на клеммы 1,2 разъёма Х2, В220
>> Частота напряжения, подаваемая на клеммы 1,2 разъёма Х2, Гц50
>> Ток, потребляемый по цепям клемм 1,2 разъёма Х2, В220
Время задержки при переключении направления вращения, с0,5

Принцип работы
АПР поддерживает управление входным напряжением 220 В переменного тока до 80 мА частотой 50 Гц. Подключение производят к разъёму Х2. При этом нейтраль (N) подключают к контакту 3 разъёма Х2. К разъёму Х3 нейтраль (N) не подключается. При появлении сигнала «ВПЕРЁД» и отсутствии сигнала «НАЗАД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 2 и 3 разъёма Х4 соответственно. А при появлении сигнала «НАЗАД» и отсутствии сигнала «ВПЕРЁД» происходит включение трёх симисторов, обеспечивающих прохождение переменного тока трёх фаз от клемм 1, 2 и 3 разъёма Х3 к клеммам 1, 3 и 2 разъёма Х4 соответственно. Таким образом, при сигнале «НАЗАД» происходит перекоммутация фаз B и C. Каждая из фаз включается (и отключается) в момент перехода напряжения через «0 В». Это обеспечивает снижение помех при коммутации нагрузки. При одновременном поступлении сигналов «ВПЕРЁД» и «НАЗАД» происходит отключение всех трёх фаз от нагрузки. При смене направления вращения АПР выдерживает паузу 0,5 секунды для снижения пускового тока. Если же после отключения нагрузки происходит повторное включение без смены направления вращения, то пауза не выдерживается.

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Полупроводниковый диод

Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.

Электрический ток через контакт полупроводников p-n-типа:

Идет значительный ток.

Ток практически отсутствует.

Вольт-амперная характеристика p-n-перехода.

Правая часть графика соответствует прямому направлению тока, а левая – обратному.

Полупроводниковый диод используется как выпрямитель переменного тока.

Транзистор

Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.

Типы полупроводниковых диодов

Диоды: а) общее обозначение, б) симметричный, в) туннельный, г) обращённый, д) диод Шоттки; е, ж) стабилитроны; з) варикап; и) термодиод; к) выпрямительный столбик; л, м) диодные сборки; н, о) выпрямительный мост.

Под понятием полупроводникового диода собрано множество приборов с различным назначением. Приборы с одним p—n-переходом;

  1. универсальный;
  2. выпрямительный диод — достаточно мощный, позволяющий получать из переменного тока постоянный для питания нагрузки;
  3. импульсный диод ;
  4. лавинно-пролётный диод ;
  5. туннельный диод — диод с участком, обладающим отрицательным дифференциальным сопротивлением;
  6. стабилитрон — диод работающий на напряжении электрического пробоя в обратном направлении;
  7. варикап — диод с управляемой напряжением ёмкостью ЭДП в обратном включении;

Приборы с иными разновидностями полупроводниковых структур:

  1. диод Ганна — полупроводниковый прибор без p—n-перехода, использующий эффект доменной неустойчивости;
  2. диод Шоттки — прибор со структурой металл — полупроводник, с уменьшенным падением напряжения в прямом направлении;
  1. фотодиод — диод, преобразующий свет в разность потенциалов;
  2. светодиод — диод, излучающий свет.

Также, помимо прочего, к диодам относят:

  1. динистор (диод Шокли), неуправляемый тиристор, имеющий слоистую p—n—p—n-структуру;

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Методы управления

Инвертор напряжения

  • Двухуровневый инвертор напряжения
  • Трехуровневый преобразователь с фиксированной нейтральной точкой
  • Каскадный Н-мостовой преобразователь
  • Преобразователь с плавающими конденсаторами

Инвертор напряжения наиболее распространен среди силовых преобразователей.

Двухуровневый инвертор напряжения

Двухуровневый инвертор напряжения (two-level voltage-source inverter) – наиболее широко применяемая топология преобразователя энергии. Он состоит из конденсатора и двух силовых полупроводниковых ключей на фазу. Управляющий сигнал для верхнего и нижнего силовых ключей связан и генерирует только два возможных состояния выходного напряжения (нагрузка соединяется с положительной или отрицательной шиной источника постоянного напряжения).

Используя методы модуляции для генерирования управляющих импульсов возможно синтезировать выходное напряжение с желаемыми параметрами (формой, частотой, амплитудой). Из-за содержания высоких гармоник в выходном сигнале для генерирования синусоидальных токов выходной сигнал необходимо фильтровать, но так как данные преобразователи обычно имеют индуктивную нагрузку (электродвигатели) дополнительные фильтры используются только при необходимости.

Максимальное выходное напряжение определяется значением постоянного напряжения звена постоянного тока. Для эффективного управления мощной нагрузкой требуется высокое постоянное напряжение звена постоянного тока, но на практике это напряжение ограничено максимальным рабочим напряжением полупроводников. Для примера низковольтные IGBT транзисторы обеспечивают выходное напряжение до 690 В. Для того чтобы обойти данное ограничение по напряжению в последние десятилетия были разработаны схемы многоуровневых преобразователей. Данные преобразователи сложнее, чем двухуровневые в плане топологии, модуляции и управления, но при этом имеют лучшие показатели по мощности, надежности, габаритам, производительности и эффективности.

Трехуровневый преобразователь с фиксированной нейтральной точкой

В трехуровневом преобразователе с фиксированной нейтральной точкой (three-level neutral point clamped converter) постоянное напряжение делится поровну посредством двух конденсаторов, поэтому фаза может быть подключена к линии положительного напряжения (посредством включения двух верхних ключей), к средней точке (посредством включения двух центральных ключей) или к линии отрицательного напряжения (посредством включения двух нижних ключей). Каждому ключу в данном случае требуется блокировать только половину напряжения звена постоянного тока, тем самым позволяя увеличить мощность устройства, используя те же самые полупроводниковые ключи, как и в обычном двухуровневом преобразователе. В данном преобразователе обычно используются высоковольтные IGBT транзисторы и IGCT тиристоры.

    Недостатками данных преобразователей являются:
  • Дисбаланс конденсаторов, создающий асимметрию в преобразователе. Данную проблему предлагается решать путем изменения метода модуляции.
  • Неравное распределение потерь из-за того, что потери на переключение внешних и центральных ключей отличаются в зависимости от режима работы. Данная проблема не может быть решена с использованием обычной схемы, поэтому была предложена измененная топология – активный преобразователь со связанной нейтральной точкой (active NPC). В этой схеме диоды заменены управляемыми ключами. Таким образом, выбирая соответствующую комбинацию ключей, возможно уменьшить и равномерно распределить потери.

Преобразователь с фиксированной нейтральной точкой может масштабироваться для достижения больше чем трех уровней выходного сигнала путем деления напряжения звена постоянного тока более чем на два значения посредством конденсаторов. Каждое из этих деленных напряжений может быть подключено к нагрузке с использованием расширенного набора ключей и ограничительных диодов. Вместе с увеличением мощности преимуществами многоуровневого преобразователя является лучшее качество электроэнергии, меньшее значение скорости нарастания напряжения (dv/dt) и связанных электромагнитных помех. Однако, когда преобразователь со связанной нейтральной точкой имеет более трех уровней, появляются другие проблемы. С точки зрения схемотехники в таком случае ограничительные диоды требуют более высокое максимальное рабочее напряжение чем основные ключи, что требует использования различных технологий или нескольких ограничительных диодов соединенных последовательно. В дополнение становится критическим неравномерное использование силовых элементов в схеме. В итоге из-за увеличения количества элементов снижается надежность. Приведенные недостатки ограничивают использование преобразователей с фиксированной нейтральной точкой с более чем тремя уровнями в промышленных приложениях.

Многоуровневые преобразователи

Каскадные преобразователи основанные на модульных силовых ячейках со схемой H-мост (cascaded H-bridge — CHB) и преобразователи с плавающими конденсаторами (flying capacitor converter) были предложены для обеспечения большего количества уровней выходного напряжения в сравнении с преобразователями с фиксированной нейтральной точкой.

Каскадный Н-мостовой преобразователь

Каскадный преобразователь — высоко модульный преобразователь, состоящий из нескольких однофазных инверторов, обычно называемыми силовыми ячейками, соединенными последовательно для формирования фазы. Каждая силовая ячейка выполнена на стандартных низковольтных компонентах, что обеспечивает их легкую и дешевую замену в случае выхода из строя.

Основным преимуществом данного преобразователя является использование только низковольтных компонентов, при этом он дает возможность управлять мощной нагрузкой среднего диапазона напряжения. Несмотря на то что частота коммутации в каждой ячейке низкая, эквивалентная частота коммутации приложенная к нагрузке – высокая, что уменьшает потери на переключение ключей, дает низкую скорость нарастания напряжения (dv/dt) и помогает избежать резонансов.

Преобразователь с плавающими конденсаторами

Выходное напряжение преобразователя с плавающими конденсаторами получается путем прямого соединения выхода фазы с положительной, отрицательной шиной или подключением через конденсаторы. Количество уровней выходных напряжений зависит от количества навесных конденсаторов и отношения между различными напряжениями.

Этот преобразователь, как и в случае каскадного преобразователя, также имеет модульную топологию, где каждая ячейка состоит из конденсатора и двух связанных ключей. Однако, в отличие от каскадного преобразователя добавление дополнительных силовых ключей к конденсаторному преобразователю не увеличивает номинальную мощность преобразователя, а только уменьшает скорость нарастания напряжения (dv/dt), улучшая коэффициент гармоник выходного сигнала. Как и у каскадного преобразователя, модульность уменьшает стоимость замены элементов, облегчает поддержку и позволяет реализовать отказоустойчивую работу.

Конденсаторный преобразователь требует только один источник постоянного тока для питания всех ячеек и фаз. Поэтому, можно обойтись без входного трансформатора, а количество ячеек может быть произвольно увеличено в зависимости от требуемой выходной мощности. Подобно преобразователю с фиксированной нейтральной точкой, этому преобразователю требуется специальный алгоритм управления для регулирования напряжения на конденсаторах.

Инвертор тока

Для работы инвертору тока всегда требуется управляемый выпрямитель, чтобы обеспечить постоянный ток в звене постоянного тока. В стандартной топологии обычно используются тиристорные выпрямители. Чтобы уменьшить помехи в нагрузке, в звене постоянного тока используется расщепленная индуктивность. Инвертор тока имеет схему силовых ключей наподобие инвертора напряжения, но в качестве силовых ключей используются тиристоры с интегрированным управлением (IGCT). Выходной ток имеет форму ШИМ и не может быть напрямую приложен к индуктивной нагрузке (электродвигателю), поэтому инвертор тока обязательно включает выходной емкостной фильтр, который сглаживает ток и выдает гладкое напряжение на нагрузку. Этот преобразователь может быть реализован для работы на средних напряжениях и более того он по природе имеет возможность рекуперации энергии.

Прямые преобразователи

Прямые преобразователи передают энергию прямо от входа к выходу без использования элементов накопления энергии. Основным преимуществом таких преобразователей является меньшие габариты. Недостатком – необходимость более сложной схемы управления.

Циклоконвертер относится к категории прямых преобразователей. Данный преобразователь широко использовался в приложениях требующих высокую мощность. Этот конвертер состоит из двойных тиристорных преобразователей на фазу, который может генерировать изменяемое постоянное напряжение, контролируемое таким образом, чтобы следовать опорному синусоидальному сигналу. Вход каждого преобразователя питается от фозосмещающего трансформатора, где устраняются гармоники входного тока низкого порядка. Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. По своей природе данный преобразователь хорошо подходит для управления низкочастотными мощными нагрузками.

Матричный преобразователь в его прямой и непрямой версии также принадлежит к категории прямых преобразователей. Основной принцип работы прямого матричного преобразователя (direct matrix converter) — возможность соединения выходной фазы к любому из входных напряжений. Преобразователь состоит из девяти двунаправленных ключей, которые могут соединить любую входную фазу с любой выходной фазой, позволяя току течь в обоих направлениях. Для улучшения входного тока требуется индуктивно-емкостной фильтр второго порядка. Выход напрямую соединяется с индуктивной нагрузкой. Не все доступные комбинации ключей возможны, они ограничены только 27 правильными состояниями коммутации. Как говорилось ранее, основное преимущество матричных преобразователей — меньшие габариты, что важно для автомобильных и авиационных приложений.

Непрямой матричный преобразователь (indirect matrix converter) состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора. Количество силовых полупроводников такое же как у прямых матричных преобразователей (если двунаправленный ключ рассматривается как два однонаправленных ключа), но количество возможных состояний включения отличается. Используя ту же самую конфигурацию непрямого матричного преобразователя, возможно упростить его топологию и уменьшить количество элементов ограничив его работу от положительного напряжения в виртуальном звене постоянного тока. Уменьшенная топология называется разреженный матричный преобразователь (sparse matrix converter).

голоса
Рейтинг статьи
Читать еще:  Локальная смета автоматический выключатель
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector